Why use R to do SNA?
- Review of SNA software
- Pros and Cons of SNA in R
- Comparison of SNA in R vs. Python

Examples of SNA in R
- Basic SNA - computing centrality metrics and identifying key actors
- Visualization - examples using igraph’s built-in viz functions

Additional Resources
- Online Tutorials
- Helpful experts

Live SNA of people in the room via Twitter
- Generate network data from a specific hash-tag
If you are on Twitter, send a tweet containing the following hash-tag:

#DrewSNA

During my talk, your tweets will be downloaded and your Twitter network will be generated

- At the conclusion of the talk I will do some live network analysis from this data

Examples:

- “I can’t believe I have to listen to this guy for another hour #DrewSNA”
- “I have more #rstats know-how in my little finger than this idiot #DrewSNA”
- “At least there is beer #DrewSNA”
The number of software suites and packages available for conducting social network analysis has exploded over the past ten years. In general, this software can be categorized in two ways:

- **Type** - many SNA tools are developed to be standalone applications, while others are language specific packages.
- **Intent** - consumers and producer of SNA come from a wide range of technical expertise and/or need, therefore, there exist simple tools for data collection and basic analysis, as well as complex suites for advanced research.

<table>
<thead>
<tr>
<th>Standalone Apps</th>
<th>Modules & Packages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>Advanced</td>
</tr>
<tr>
<td>- ORA (Windows)</td>
<td>- ORA (Windows)</td>
</tr>
<tr>
<td>- Analyst Notebook (Windows)</td>
<td>- Analyst Notebook (Windows)</td>
</tr>
<tr>
<td>- KrakPlot (Windows)</td>
<td>- KrakPlot (Windows)</td>
</tr>
<tr>
<td>- UCINet (Windows)</td>
<td>- UCINet (Windows)</td>
</tr>
<tr>
<td>- Pajek (Multi)</td>
<td>- Pajek (Multi)</td>
</tr>
<tr>
<td>- Network Workbench (Multi)</td>
<td>- Network Workbench (Multi)</td>
</tr>
<tr>
<td></td>
<td>- libSNA (Python)</td>
</tr>
<tr>
<td></td>
<td>- URLNet (Python)</td>
</tr>
<tr>
<td></td>
<td>- NodeXL (MS Excel)</td>
</tr>
<tr>
<td></td>
<td>- NetworkX (Python)</td>
</tr>
<tr>
<td></td>
<td>- JUNG (Java)</td>
</tr>
<tr>
<td></td>
<td>- igraph (Python, R & Ruby)</td>
</tr>
<tr>
<td>Pros</td>
<td>Cons</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Diversity of tools available in R</td>
<td>Structural Holes</td>
</tr>
<tr>
<td>Analysis - sna: sociometric data; RBGL:</td>
<td>Burt's constraint is higher if ego has less, or mutually stronger related (i.e. more redundant) contacts. Burt's measure of constraint, $C[i]$, of vertex i's ego network $V[i]$</td>
</tr>
<tr>
<td>Simulation - ergm: exponential random graph; networksis: bipartite networks</td>
<td>Not well suited for live or dynamic data prototyping</td>
</tr>
<tr>
<td>Specific use - degreenet: degree distribution; tnet: weighted networks</td>
<td>It is often useful to be able to build network data from the web or streaming data sources</td>
</tr>
<tr>
<td>Built-in visualization tools</td>
<td></td>
</tr>
</tbody>
</table>
Pros and Cons of SNA in R

Pros

Diversity of tools available in R

- Analysis - `sna`: sociometric data; `RBGL`: Binding to Boost Graph Lib
- Simulation - `ergm`: exponential random graph; `networksis`: bipartite networks
- Specific use - `degreenet`: degree distribution; `tnet`: weighted networks

Cons

Steep learning curve for SNA novices

- As with most things in R, the network analysis packages were designed by analysts for analysts
- These tools require at least a moderate familiarity with network structures and basic metrics

Structural Holes

Burt's constraint is higher if ego has less, or mutually stronger related (i.e. more redundant) contacts. Burt's measure of constraint, $C[i]$, of vertex i's ego network $V[i]$

Not well suited for live or dynamic data prototyping

- It is often useful to be able to build network data from the web or streaming data sources
- `igraph` is designed to work on fixed data sets
 - Ex. parsing and analyzing Twitter data
Pros and Cons of SNA in R

Pros

Diversity of tools available in R

- Analysis - *sna*: sociometric data; *RBGL*: Binding to Boost Graph Lib
- Simulation - *ergm*: exponential random graph; *networksis*: bipartite networks
- Specific use - *degreenet*: degree distribution; *tnet*: weighted networks

Built-in visualization tools

- Take advantage of R’s built-in graphics tools

Cons

- Steep learning curve for SNA novices
 - As with most things in R, the network analysis packages were designed by analysts for analysts
 - These tools require at least a moderate familiarity with network structures and basic metrics

- Not well suited for live or dynamic data prototyping
 - It is often useful to be able to build network data from the web or streaming data sources
 - *igraph* is designed to work on fixed data sets
 - Ex. parsing and analyzing Twitter data
Pros and Cons of SNA in R

Pros

Diversity of tools available in R

- Analysis -`sna`: sociometric data; `RBGL`: Binding to Boost Graph Lib
- Simulation -`ergm`: exponential random graph; `networksis`: bipartite networks
- Specific use -`degreenet`: degree distribution; `tnet`: weighted networks

Built-in visualization tools

- Take advantage of R’s built-in graphics tools

Immediate access to more statistical analysis

- Perform SNA and network based econometrics “under the same roof”

Cons

Steep learning curve for SNA novices

- As with most things in R, the network analysis packages were designed by analysts for analysts
- These tools require at least a moderate familiarity with network structures and basic metrics

Structural Holes

Burt’s constraint is higher if ego has less, or mutually stronger related (i.e. more redundant) contacts. Burt’s measure of constraint, \(C_i \), of vertex i’s ego network \(V_i \)

Not well suited for live or dynamic data

- It is often useful to be able to build network data from the web or streaming data sources
- `igraph` is designed to work on fixed data sets
- Ex. parsing and analyzing Twitter data
Why use R to do SNA?
Examples of SNA in R
Additional Resources

Pros and Cons of SNA in R

Pros

Diversity of tools available in R

- Analysis - sn: sociometric data; RBGL: Binding to Boost Graph Lib
- Simulation - ergm: exponential random graph; networksis: bipartite networks
- Specific use - degreenet: degree distribution; tnet: weighted networks

Built-in visualization tools

- Take advantage of R’s built-in graphics tools

Immediate access to more statistical analysis

- Perform SNA and network based econometrics “under the same roof”

Cons

Steep learning curve for SNA novices

- As with most things in R, the network analysis packages were designed by analysts for analysts
- These tools require at least a moderate familiarity with network structures and basic metrics

Structural Holes

Burt’s constraint is higher if ego has less, or mutually stronger related (i.e. more redundant) contacts. Burt’s measure of constraint, C[i], of vertex i’s ego network V[i]
Pros and Cons of SNA in R

Pros

Diversity of tools available in R
- Analysis - sna: sociometric data; RBGL: Binding to Boost Graph Lib
- Simulation - ergm: exponential random graph; networksis: bipartite networks
- Specific use - degreenet: degree distribution; tnet: weighted networks

Built-in visualization tools
- Take advantage of R’s built-in graphics tools

Immediate access to more statistical analysis
- Perform SNA and network based econometrics “under the same roof”

Cons

Steep learning curve for SNA novices
- As with most things in R, the network analysis packages were designed by analysts for analysts
- These tools require at least a moderate familiarity with network structures and basic metrics

Structural Holes

Burt’s constraint is higher if ego has less, or mutually stronger related (i.e. more redundant) contacts. Burt’s measure of constraint, $C[i]$, of vertex i’s ego network $V[i]$

Not well suited for live or dynamic data prototyping
- It is often useful to be able to build network data from the web or streaming data sources
- igraph is designed to work on fixed data sets

- Ex. parsing and analyzing Twitter data

Drew Conway
Social Network Analysis in R
Direct Comparison of NetworkX (Python) vs. igraph

Using a randomly generated Barabasi-Albert network with 2,500 nodes and 4,996 edges we perform a side-by-side comparison of these two network analysis packages.\(^1\)

\(^1\) All tests performed on a 2.5 GHz Intel Core 2 Duo MacBook Pro with 4GB 667 MHz DDR2
Using a randomly generated Barabasi-Albert network with 2,500 nodes and 4,996 edges we perform a side-by-side comparison of these two network analysis packages.¹

Test 1: Betweenness centrality

NX Code 1

```python
def betweenness_test(G):
    start=time.clock()
    B=networkx.brandes_betweenness_centrality(G)
    return time.clock()-start
```

igraph Code 1

```r
betweenness_test<-function(graph) {
    return(betweenness(graph))
}
system.time(B<-betweenness_test(G))
```

¹All tests performed on a 2.5 GHz Intel Core 2 Duo MacBook Pro with 4GB 667 MHz DDR2
Direct Comparison of NetworkX (Python) vs. igraph

Using a randomly generated Barabasi-Albert network with 2,500 nodes and 4,996 edges we perform a side-by-side comparison of these two network analysis packages.¹

Test 1: Betweenness centrality

NX Code 1

```python
def betweenness_test(G):
    start=time.clock()
    B=networkx.brandes_betweenness_centrality(G)
    return time.clock()-start
```

Runtime: 55.89 sec

igraph Code 1

```r
betweenness_test<-function(graph) {
    return(betweenness(graph))
}
```

```r
system.time(B<-betweenness_test(G))
```

Runtime: 1.12 sec ✓

¹ All tests performed on a 2.5 GHz Intel Core 2 Duo MacBook Pro with 4GB 667 MHz DDR2
Using a randomly generated Barabasi-Albert network with 2,500 nodes and 4,996 edges we perform a side-by-side comparison of these two network analysis packages.\(^1\)

Test 1: Betweenness centrality

NX Code 1
```
def betweenness_test(G):
    start=time.clock()
    B=networkx.brandes_betweenness_centrality(G)
    return time.clock()-start
```

igraph Code 1
```
betweenness_test<-function(graph) {
  return(betweenness(graph))
}
system.time(B<-betweenness_test(G))
```

Runtime: 55.89 sec

Test 2: Fruchterman-Reingold force-directed layout

NX Code 2
```
def layout_test(G,i=50):
    start=time.clock()
    v=networkx.layout.spring_layout(G,iterations=i)
    return time.clock()-start
```

igraph Code 2
```
layout_test<-function(graph,i=50) {
  return(layout.fruchterman.reingold(graph,niter=i))
}
system.time(v<-layout_test(G))
```

Runtime: 9.03 sec ✓

\(^1\) All tests performed on a 2.5 GHz Intel Core 2 Duo MacBook Pro with 4GB 667 MHz DDR2
Using a randomly generated Barabasi-Albert network with 2,500 nodes and 4,996 edges we perform a side-by-side comparison of these two network analysis packages.\(^1\)

Test 1: Betweenness centrality

NX Code 1
```python
def betweenness_test(G):
    start=time.clock()
    B=nx.betweenness_centrality(G)
    return time.clock()-start
```

igraph Code 1
```r
betweenness_test<-function(graph) {
    return(betweenness(graph))
} system.time(B<-betweenness_test(G))
```

Runtime: 55.89 sec

Graph: ✓

Test 2: Fruchterman-Reingold force-directed layout

NX Code 2
```python
def layout_test(G,i=50):
    start=time.clock()
    v=nx.spring_layout(G,iterations=i)
    return time.clock()-start
```

igraph Code 2
```r
layout_test<-function(graph,i=50) {
    return(layout.fruchterman.reingold(graph,niter=i))
} system.time(v<-layout_test(G))
```

Runtime: 1 min 6.13 sec

Graph: ✓

\(^1\) All tests performed on a 2.5 GHz Intel Core 2 Duo MacBook Pro with 4GB 667 MHz DDR2
Direct Comparison of NetworkX (Python) vs. igraph

Test 3: Graph diameter (maximum shortest path)
Direct Comparison of NetworkX (Python) vs. igraph

Test 3: Graph diameter (maximum shortest path)

NX Code 3

```python
def diameter_test(G):
    start=time.clock()
    D=networkx.distance.diameter(G)
    return time.clock()-start
```

igraph Code 3

```r
diameter_test<-function(graph) {
    return(diameter(graph))
}
```

System time:
```
D<-diameter_test(G)
```

Runtime: 0.42 sec

Test 4: Find maximal cliques

NX Code 4

```python
def max_clique_test(G):
    start=time.clock()
    C=networkx.clique.find_cliques(G)
    return time.clock()-start
```

Runtime: 1.27 sec

igraph Code 4

```r
max_clique_test<-function(graph) {
    return(maximal.cliques(graph))
}
```

System time:
```
M<-max_clique_test(G)
```

Runtime: 8 min 24.95 sec

From developer:

...the approach taken by igraph 0.5.2 and older versions at least suboptimal...maximal.cliques takes the complementer of the graph and looks for maximal independent vertex sets in the complementer. In the 0.6 tree, I added the Bron-Kerbosch algorithm, which should be much faster. The algorithm is implemented in C, so all the number crunching is done in the C layer, not in R.

Drew Conway
Social Network Analysis in R
Direct Comparison of NetworkX (Python) vs. igraph

Test 3: Graph diameter (maximum shortest path)

NX Code 3

```python
def diameter_test(G):
    start=time.clock()
    D=networkx.distance.diameter(G)
    return time.clock()-start
```

Runtime: 15.66 sec

igraph Code 3

```r
diameter_test<-function(graph) {
    return(diameter(graph))
}

system.time(D<-diameter_test(G))
```

Runtime: 0.42 sec ✓
Direct Comparison of NetworkX (Python) vs. igraph

Test 3: Graph diameter (maximum shortest path)

NX Code 3

```python
def diameter_test(G):
    start=time.clock()
    D=networkx.distance.diameter(G)
    return time.clock()-start
```

Runtime: 15.66 sec

igraph Code 3

```r
diameter_test<-function(graph) {
    return(diameter(graph))
} system.time(D<-diameter_test(G))
```

Runtime: 0.42 sec ✔

Test 4: Find maximal cliques

NX Code 4

```python
def max_clique_test(G):
    start=time.clock()
    C=networkx.clique.find_cliques(G)
    return time.clock()-start
```

igraph Code 4

```r
max_clique_test<-function(graph) {
    return(maximal.cliques(graph))
} system.time(M<-max_clique_test(G))
```

Runtime: 8 min 24.95 sec

From developer:

...the approach taken by igraph 0.5.2 and older versions at least suboptimal...maximal.cliques takes the complementer of the graph and looks for maximal independent vertex sets in the complementer. In the 0.6 tree, I added the Bron-Kerbosch algorithm, which should be much faster. The algorithm is implemented in C, so all the number crunching is done in the C layer, not in R.

Drew Conway
Social Network Analysis in R
Test 3: Graph diameter (maximum shortest path)

NX Code 3

```python
def diameter_test(G):
    start=time.clock()
    D=networkx.distance.diameter(G)
    return time.clock()-start
```

Runtime: 15.66 sec

igraph Code 3

```r
diameter_test<-function(graph) {
    return(diameter(graph))
} 
```

Runtime: 0.42 sec ✓

Test 4: Find maximal cliques

NX Code 4

```python
def max_clique_test(G):
    start=time.clock()
    C=networkx.clique.find_cliques(G)
    return time.clock()-start
```

Runtime: 1.27 sec ✓

igraph Code 4

```r
max_clique_test<-function(graph) {
    return(maximal.cliques(graph))
} 
```

Runtime: 8 min 24.95 sec

From developer: ...the approach taken by igraph 0.5.2 and older versions at least suboptimal...maximal.cliques takes the complementer of the graph and looks for maximal independent vertex sets in the complementer. In the 0.6 tree, I added the Bron-Kerbosch algorithm, which should be much faster. The algorithm is implemented in C, so all the number crunching is done in the C layer, not in R.
Often social network analysis is used to identify key actors within a social group. To identify these actors, various centrality metrics can be computed based on a network’s structure:

- Degree (number of connections)
- Betweenness (number of shortest paths an actor is on)
- Closeness (relative distance to all other actors)
- Eigenvector centrality (leading eigenvector of sociomatrix)

One method for using these metrics to identify key actors is to plot actors’ scores for Eigenvector centrality versus Betweenness. Theoretically, these metrics should be approximately linear; therefore, any non-linear outliers will be of note.

- An actor with very high betweenness but low EC may be a critical gatekeeper to a central actor
- Likewise, an actor with low betweenness but high EC may have unique access to central actors
For this example, we will use the main component of the social network collected on drug users in Hartford, CT. The network has 194 nodes and 273 edges.

Finding Key Actors with R

For this example, we will use the main component of the social network collected on drug users in Hartford, CT. The network has 194 nodes and 273 edges.

Load the data into igraph

```r
library(igraph)
G <- read.graph("drug_main.txt", format="edgelist")
G <- as.undirected(G)
# By default, igraph inputs edgelist data as a directed graph.
# In this step, we undo this and assume that all relationships are reciprocal.
```

For this example, we will use the main component of the social network collected on drug users in Hartford, CT.\(^2\) The network has 194 nodes and 273 edges.

Load the data into igraph

```
library(igraph)
G <- read.graph("drug_main.txt", format="edgelist")
G <- as.undirected(G)
# By default, igraph inputs edgelist data as a directed graph.
# In this step, we undo this and assume that all relationships are reciprocal.
```

Store metrics in new data frame

```
cent <- data.frame(bet=betweenness(G), eig=evcent(G)$vector)
# evcent returns lots of data associated with the EC, but we only need the
# leading eigenvector
res <- lm(eig~bet, data=cent)$residuals
cent <- transform(cent, res=res)
# We will use the residuals in the next step
```

Finding Key Actors with R

Plot the data

```r
library(ggplot2)
# We use ggplot2 to make things a bit prettier
p<-ggplot(cent,aes(x=bet,y=eig,
    label=rownames(cent),colour=res,
    size=abs(res)))+xlab("Betweenness Centrality")
   +ylab("Eigenvector Centrality")
# We use the residuals to color and shape the points of our plot,
# making it easier to spot outliers.
p+geom_text()+opts(title="Key Actor Analysis for Hartford Drug Users")
# We use the geom_text function to plot the actors' ID's rather than points
# so we know who is who
```

Drew Conway
Social Network Analysis in R
Why use R to do SNA?
Examples of SNA in R
Additional Resources

Basic SNA
Visualization

Finding Key Actors with R

Plot the data

```r
library(ggplot2)
# We use ggplot2 to make things a bit prettier
p<-ggplot(cent,aes(x=bet,y=eig,
    label=rownames(cent),colour=res,
    size=abs(res)))+
xlab("Betweenness Centrality")+
ylab("Eigenvector Centrality")
# We use the residuals to color and shape the points of our plot,
# making it easier to spot outliers.
p+geom_text()+
```
Highlighting Key Actors

Using the drug network data, we will now identify the location of the key actors from the previous analysis.

- We will use the same residual data from before to size the nodes and locate the key actors.

First, however, we'll look at the network as a whole using igraph’s Tcl/Tk interface.
Using the drug network data, we will now identify the location of the key actors from the previous analysis.

- We will use the same residual data from before to size the nodes and locate the key actors.

First, however, we'll look at the network as a whole using igraph’s Tcl/Tk interface.

```r
library(igraph)
G <- as.undirected(read.graph("drug_main.txt", format="edgelist"))
tklplot(G, layout=layout.fruchterman.reingold)
# This will open a new X11 window plot of G
```
Why use R to do SNA?

Examples of SNA in R

Additional Resources

Basic SNA Visualization

Key Actor Plot

Network plot

```r
# Create positions for all of the nodes w/ force directed
l<-layout.fruchterman.reingold(G, niter=500)

# Set the nodes' size relative to their residual value
V(G)$size<-abs(res)*10

# Only display the labels of key players
nodes<-as.vector(V(G)+1)

# Key players defined as have a residual value > .25
nodes[which(abs(res)<.25)]<-NA

# Save plot as PDF
pdf('actor_plot.pdf',pointsize=7)
plot(G,layout=l,vertex.label=nodes, vertex.label.dist=0.25, vertex.label.color='red',edge.width=1)
dev.off()
```

Drew Conway Social Network Analysis in R
Other Useful SNA Plots

Highlight the graph's longest geodesic

```r
# Find diameter
D <- get.diameter(G) # Find nodes on diameter path
# Reset G's node/width size for new graph
V(G)$size<-4
E(G)$width<-1
E(G)$color<-'dark grey'
E(G, path=D)$width<-3 # Set diameter path width to 3
E(G, path=D)$color<-'red' # and change color to red
# Save plot as PDF
pdf('diameter_plot.pdf')
plot(G, layout=l, vertex.label=NA)
dev.off()
```

Drew Conway
Social Network Analysis in R
Highlight the graph's longest geodesic

Find diameter

```r
d<-get.diameter(G) # Find nodes on diameter path  
# Reset G's node/width size for new graph  
V(G)$size<-4  
E(G)$width<-1  
E(G)$color<-'dark grey'  
E(G, path=d)$width<-3 # Set diameter path width to 3  
E(G, path=d)$color<-'red' # and change color to red  
# Save plot as PDF  
pdf('diameter_plot.pdf')  
plot(G,layout=l,vertex.label=NA)  
de.v.off()
```

Drew Conway
Social Network Analysis in R
Why use R to do SNA?

- **Examples of SNA in R**
- **Additional Resources**

Basic SNA Visualization

- **Other Useful SNA Plots**

 - **Highlight the graph's longest geodesic**
    ```r
d<-get.diameter(G) # Find nodes on diameter path
# Reset G's node/width size for new graph
V(G)$size<-4
E(G)$width<-1
E(G)$color<-'dark grey'
E(G, path=d)$width<-3 # Set diameter path width to 3
E(G, path=d)$color<-'red' # and change color to red
# Save plot as PDF
pdf('diameter_plot.pdf')
plot(G,layout=l,vertex.label=NA)
dev.off()
```

 - **Extract the 2-core**
    ```r
    # Find each actor's coreness
    cores<-graph.coreness(G)
    # Extract 2-core, to eliminate pendants and pendant chains
    G2<-subgraph(G,as.vector(which(cores>1))-1)
    V(G2)$size<-4
    l2<-layout.fruchterman.reingold(G2,niter=500)
    # Save plot as a PDF
    pdf('2core.pdf',pointsize=7)
    plot(G2,layout=l2)
dev.off()
    ```

Drew Conway

Social Network Analysis in R
Other Useful SNA Plots

Highlight the graph's longest geodesic

```
Find diameter

d <- get.diameter(G) # Find nodes on diameter path
# Reset G's node/width size for new graph
V(G)$size <- 4
E(G)$width <- 1
E(G)$color <- 'dark grey'
E(G, path=d)$width <- 3 # Set diameter path width to 3
E(G, path=d)$color <- 'red' # and change color to red
# Save plot as PDF
pdf('diameter_plot.pdf')
plot(G, layout=l, vertex.label = NA)
dev.off()
```

Extract the 2-core

```
K-core Analysis

# Find each actor's coreness
cores <- graph.coreness(G)
# Extract 2-core, to eliminate pendants and pendant chains
G2 <- subgraph(G, as.vector(which(cores > 1)) - 1)
V(G2)$size <- 4
l2 <- layout.fruchterman.reingold(G2, niter = 500)
# Save plot as a PDF
pdf('2core.pdf', pointsize = 7)
plot(G2, layout = l2)
dev.off()
```

Drew Conway
Social Network Analysis in R
igraph

- Network Analysis with igraph
- Excellent resource for learning how to use igraph in R, but also reviews many of the basic concepts of SNA

statnet

- Statnet Users Guide
- This package combines functionality from several popular R packages for SNA, and the online users guide contains reference material for:
 - network: A package for managing relational data in R
 - ergm: A package to fit, simulate and diagnose exponential family models for networks
 - latentnet: a package for fitting latent cluster models for networks
 - sna: A package for social network analysis
 - dynamicnetwork and rSoNIA: Prototype packages for managing and animating longitudinal network data
 - networksis: A Package to Simulate Bipartite Graphs with Fixed Marginals Through Sequential Importance Sampling

Material from this presentation

- These slides are available for download at the NY HackR website under files
- The R and Python code and data used for the benchmarking and analysis examples are also available for download
Several experts in both SNA in R, and SNA more general are active online and can be very helpful for those trying these methods for the first time

- **SNA in R Experts**
 - Nicole Radziwill - networks researcher
 - **Web:** http://qualityandinnovation.com/
 - **Twitter:** @nicoleradziwill
 - Michael Bommarito - PhD student in political science at U Michigan
 - **Web:** http://computationallegalstudies.com/
 - **Twitter:** @mjbommar

- **General SNA Help**
 - Valdis Krebs - Business networks researcher and developer of InFlow
 - **Web:** http://www.orgnet.com/
 - **Twitter:** @valdiskrebs
 - Steve Borgatti - Professor at U Kentucky Business school and UCINET developer
 - **Web:** http://www.steveborgatti.com/
 - **Twitter:** @ittagroB
Drew’s contact info

- **Email:** drew.conway@nyu.edu
- **Web:** http://www.drewconway.com/zia
- **Twitter:** @drewconway