Forecasting the 2012 Presidential Election from History and the Polls

Drew Linzer

Assistant Professor
Emory University
Department of Political Science

Visiting Assistant Professor, 2012-13
Stanford University
Center on Democracy, Development, and the Rule of Law

votamatic.org

Bay Area R Users Group
February 12, 2013
The 2012 Presidential Election: *Obama 332–Romney 206*

But also:

Nerds 1–Pundits 0

Analyst forecasts based on history and the polls

Drew Linzer, Emory University 332-206

Simon Jackman, Stanford University 332-206

Josh Putnam, Davidson College 332-206

Nate Silver, New York Times 332-206

Sam Wang, Princeton University 303-235

Pundit forecasts based on intuition and gut instinct

Karl Rove, Fox News 259-279

Newt Gingrich, Republican politician 223-315

Michael Barone, Washington Examiner 223-315

George Will, Washington Post 217-321

Steve Forbes, Forbes Magazine 217-321
But also: *Nerds 1–Pundits 0*
The 2012 Presidential Election:
Obama 332–Romney 206

But also: *Nerds 1–Pundits 0*

Analyst forecasts based on history and the polls

- Drew Linzer, Emory University 332-206
- Simon Jackman, Stanford University 332-206
- Josh Putnam, Davidson College 332-206
- Nate Silver, New York Times 332-206
- Sam Wang, Princeton University 303-235

Pundit forecasts based on intuition and gut instinct

- Karl Rove, Fox News 259-279
- Newt Gingrich, Republican politician 223-315
- Michael Barone, Washington Examiner 223-315
- George Will, Washington Post 217-321
- Steve Forbes, Forbes Magazine 217-321
What we want: Accurate forecasts as early as possible

The problem:

• The data that are available early aren’t accurate: Fundamental variables (economy, approval, incumbency)

• The data that are accurate aren’t available early: Late-campaign state-level public opinion polls

• The polls contain sampling error, house effects, and most states aren’t even polled on most days
What we want: Accurate forecasts as early as possible

The problem:

- The data that are available early aren’t accurate: Fundamental variables (economy, approval, incumbency)
- The data that are accurate aren’t available early: Late-campaign state-level public opinion polls
- The polls contain sampling error, house effects, and most states aren’t even polled on most days

The solution:

- A statistical model that uses what we know about presidential campaigns to update forecasts from the polls in real time
What we want: Accurate forecasts as early as possible

The problem:

- The data that are available early aren’t accurate:
 Fundamental variables (economy, approval, incumbency)
- The data that are accurate aren’t available early:
 Late-campaign state-level public opinion polls
- The polls contain sampling error, house effects, and most states aren’t even polled on most days

The solution:

- A statistical model that uses what we know about presidential campaigns to update forecasts from the polls in real time

What do we know?
1. The *fundamentals* predict national outcomes, noisily.
1. The *fundamentals* predict national outcomes, noisily.

Presidential approval, June

Source: Gallup
2. States vote outcomes swing (mostly) in tandem

Source: New York Times
3. Polls are accurate on Election Day; maybe not before

Florida: Obama, 2008

Actual outcome

Source: HuffPost-Pollster
4. Voter preferences evolve in similar ways across states

[Graphs showing演变趋势 for Obama vote share in Florida, Virginia, Ohio, and Colorado in 2008.]

Source: HuffPost-Pollster
5. Voters have short term reactions to big campaign events

Convention Bumps, 1964-2008

Data are from Campbell, Cherry, and Wink (1992); Holbrook (2008); Public Perspective, PollingReport.com, and Pollster.com

Source: Tom Holbrook, UW-Milwaukee
All together: A forecasting model that learns from the polls

Publicly available state polls during the campaign

Forecasts weight fundamentals ↔ Forecasts weight polls

Source: HuffPost-Pollster
First, create a baseline forecast of each state outcome

Abramowitz *Time-for-Change* regression makes a *national* forecast:

\[
\text{Incumbent vote share} = 51.5 + 0.6 \times \text{Q2 GDP growth} \\
+ 0.1 \times \text{June net approval} \\
- 4.3 \times \text{In office two+ terms}
\]

Predicted Obama 2012 vote = 52.2%

Use uniform swing assumption to translate to the state level:

Subtract 1.5% for Obama from his 2008 state vote shares

Make this a Bayesian prior over the final state outcomes
First, create a baseline forecast of each state outcome

Abramowitz *Time-for-Change* regression makes a *national* forecast:

In incumbent vote share
\[
\text{Incumbent vote share} = 51.5 + 0.6 \text{ Q2 GDP growth} \\
+ 0.1 \text{ June net approval} \\
- 4.3 \text{ In office two+ terms}
\]

\[
\text{Predicted Obama 2012 vote} = 51.5 + 0.6 (1.3) \\
+ 0.1 (-0.8) \\
- 4.3 (0)
\]

Use uniform swing assumption to translate to the state level: Subtract 1.5% for Obama from his 2008 state vote shares. Make this a Bayesian prior over the final state outcomes.
First, create a baseline forecast of each state outcome

Abramowitz *Time-for-Change* regression makes a *national* forecast:

\[
\text{Incumbent vote share} = 51.5 + 0.6 \text{ Q2 GDP growth} \\
+ 0.1 \text{ June net approval} \\
- 4.3 \text{ In office two+ terms}
\]

\[
\text{Predicted Obama 2012 vote} = 51.5 + 0.6 (1.3) \\
+ 0.1 (-0.8) \\
- 4.3 (0)
\]

\[
\text{Predicted Obama 2012 vote} = 52.2\
\]
First, create a baseline forecast of each state outcome

Abramowitz *Time-for-Change* regression makes a *national* forecast:

\[
\text{Incumbent vote share} = 51.5 + 0.6 \text{ Q2 GDP growth} \\
+ 0.1 \text{ June net approval} \\
- 4.3 \text{ In office two+ terms}
\]

Predicted Obama 2012 vote \[= 51.5 + 0.6 (1.3) \]
\[+ 0.1 (-0.8) \]
\[- 4.3 (0) \]

Predicted Obama 2012 vote \[= 52.2\%\]

Use *uniform swing* assumption to translate to the state level:

Subtract 1.5% for Obama from his 2008 state vote shares

Make this a Bayesian prior over the final state outcomes
Combine polls across days and states to estimate trends

States with many polls

Florida: Obama, 2012

States with fewer polls

Oregon: Obama, 2012
Combine with baseline forecasts to guide future projections

Random walk (no)

Florida: Obama, 2012
Combine with baseline forecasts to guide future projections

Random walk (no)

Mean reversion

Forecasts compromise between history and the polls
A dynamic Bayesian forecasting model

Model specification

\[y_k \sim Binomial(\pi_{i[k]j[k]}, n_k) \]

\[\pi_{ij} = \text{logit}^{-1}(\beta_{ij} + \delta_j) \]

Number of people preferring Democrat in survey \(k \), in state \(i \), on day \(j \)

Proportion reporting support for the Democrat in state \(i \) on day \(j \)

National effects: \(\delta_j \)

State components: \(\beta_{ij} \)

Election forecasts: \(\hat{\pi}_{iJ} \)

Priors

\[\beta_{iJ} \sim N(\text{logit}(h_i), \tau_i) \]

Informative prior on Election Day, using historical predictions \(h_i \), precisions \(\tau_i \)

Polls assumed accurate, on average

Reverse random walk, states

\[\delta_{J} \equiv 0 \]

\[\beta_{ij} \sim N(\beta_{i(j+1)}, \sigma^2_\beta) \]

Reversal random walk, states

\[\delta_{j} \sim N(\delta(j+1), \sigma^2_\delta) \]

Reversal random walk, national
Model specification

\[y_k \sim Binomial(\pi_{i[k]j[k]}, n_k) \]

Number of people preferring Democrat in survey \(k \), in state \(i \), on day \(j \)

\[\pi_{ij} = \text{logit}^{-1}(\beta_{ij} + \delta_j) \]

Proportion reporting support for the Democrat in state \(i \) on day \(j \)

National effects: \(\delta_j \)
State components: \(\beta_{ij} \)

Election forecasts: \(\hat{\pi}_{iJ} \)

Estimated for all states simultaneously

Priors

\[\beta_{iJ} \sim N(\text{logit}(h_i), \tau_i) \]

Informative prior on Election Day, using historical predictions \(h_i \), precisions \(\tau_i \)

\[\delta_j \equiv 0 \]

Polls assumed accurate, on average

\[\beta_{ij} \sim N(\beta_{i(j+1)}, \sigma^2_\beta) \]

Reverse random walk, states

\[\delta_j \sim N(\delta_{(j+1)}, \sigma^2_\delta) \]

Reverse random walk, national
Results: Anchoring to the fundamentals stabilizes forecasts

Florida: Obama forecasts, 2012

Shaded area indicates 95% uncertainty

Obama vote share
Results: Anchoring to the fundamentals stabilizes forecasts.
There were almost no surprises in 2012

On Election Day, average error = 1.7%
Why didn't the model do more?
There were almost no surprises in 2012

On Election Day, average error = 1.7%
There were almost no surprises in 2012.

On Election Day, average error = 1.7%

Why didn’t the model improve forecasts by more?
The fundamentals and uniform swing were right on target.
Aggregate preferences were very stable.
Could the model have done better? Yes

Difference between actual and predicted vote outcomes

↑ Obama performed better than expected

↓ Romney performed better than expected
Forecasting is only one of many applications for the model

1. Who’s going to win?
2. Which states are going to be competitive?
3. What are current voter preferences in each state?
4. How much does opinion fluctuate during a campaign?
5. What effect does campaign news/activity have on opinion?
6. Are changes in preferences primarily national or local?
7. How useful are historical factors vs. polls for forecasting?
8. How early can accurate forecasts be made?
9. Were some survey firms biased in one direction or the other?
House effects (biases) were evident during the campaign.
Much more at votamatic.org

✉️ drew@votamatic.org
🐦 @DrewLinzer