The Molecular Fossil Record of Oleanane and Its Relation to Angiosperms

ARTICLE IN SCIENCE · SEPTEMBER 1994
Impact Factor: 33.61 · DOI: 10.1126/science.265.5173.768 · Source: PubMed

CITATIONS
204

READS
293

7 AUTHORS, INCLUDING:

Bradley Huizinga
ConocoPhillips
26 PUBLICATIONS 919 CITATIONS

David Winship Taylor
Indiana University Southeast
45 PUBLICATIONS 1,266 CITATIONS
The Molecular Fossil Record of Oleanane and Its Relation to Angiosperms

J. Michael Moldowan,* Jeremy Dahl,† Bradley J. Huizinga,‡ Frederick J. Fago,‡ Leo J. Hickey, Torren M. Peakman, and David Winship Taylor
The Molecular Fossil Record of Oleanane and Its Relation to Angiosperms

J. Michael Moldowan,* Jeremy Dahl,† Bradley J. Huizinga,‡ Frederick J. Fago,† Leo J. Hickey, Torren M. Peakman, David Winship Taylor

Oleanane has been reported in Upper Cretaceous and Tertiary source rocks and their related oils and has been suggested as a marker for flowering plants. Correspondence of oleanane concentrations relative to the ubiquitous microbial marker 17α-hopane with angiosperm diversification (Neocomian to Miocene) suggests that oleanane concentrations in migrated petroleum can be used to identify the maximum age of unknown or unavailable source rock. Rare occurrences of pre-Cretaceous oleanane suggest either that a separate lineage leads to the angiosperms well before the Early Cretaceous or that other plant groups have the rarely expressed ability to synthesize oleanane precursors.

Oleananes are diageneric alteration products of oleanane and taraxerene precursors (1), which in modern plants, except for a lichen (2) and a few related fern species (like Polypodium and Marsilea) (3, 4), are concentrated among the angiosperms (flowering plants) (5). Oleananes in rock extracts and petroleum are also thought to derive from angiosperms (6) and have been reported in numerous sources worldwide (7–11).

Undoubted angiosperm fossils are unknown earlier than the Early Cretaceous (12, 13). However, some fossil remains and cladistic analyses imply that angiosperms originated in the Triassic (14, 15), and studies with chloroplast DNA sequences and angiosperm DNA nucleotide sequences set angiosperm evolution to 200 million years ago (16) to more than 300 million years ago (17, 18), respectively. In any case, angiosperms were sparse in Early Cretaceous floras and begin dominating floras by the beginning of the Late Cretaceous (19, 20). Early Cretaceous angiosperm fossils have an extremely narrow range of variation (12, 21) and are scarce, a condition that may reflect a sparse population and herbaceous habit with relatively weak construction compared with their shrubby or arborescent descendants (22). Other studies yield a similar pattern (23, 24) with low occurrence of angiosperms during the Early Cretaceous but a major increase during the Late Cretaceous and early Tertiary.

The problematic evolutionary history of angiosperms and their probable connection with oleananes prompted us to study the occurrence of oleananes in rock extracts. Two components were necessary to implement this study: (i) a rapid quantitative analytical method providing firm oleanane determinations at low concentrations and (ii) a large, diverse sample suite of biostratigraphically well-defined, organic-rich, fine-grained sedimentary rocks.

Commonly used techniques for oleanane
identification are unreliable when applied to samples containing zero to small amounts of oleanane (25). For rock extracts and petroleum saturate hydrocarbon fractions, oleanane is typically analyzed by gas chromatography-mass spectrometry (GC-MS) selected ion monitoring (SIM) of the m/z 191 and other fragments. However, other pentacyclic triterpenes with similar retention times and insufficiently distinguishable mass spectra occur in small amounts in rocks and can interfere with SIM-GC-MS analysis (25), prompting us to develop a more selective analysis based on metastable reaction monitoring (MRM) GC-MS (Fig. 1) (26).

We focused on Jurassic through Miocene age rock samples deposited in marine to marine-deltaic environments. Rocks from these environments contain organic matter derived from a variety of terrestrial sources, in contrast to nonmarine coal, swamp, fluvial, and lacustrine deposits that tend to focus terrestrial input from local environments. Samples came from cores, side-wall cores, or outcrops, with total organic carbon contents ≥1% by weight, and the samples were thermally mature on the basis of kerogen pyrolysis (27).

Absolute concentrations of oleanane poorly reflect the level of input of oleanane precursors because concentrations of biological markers can vary by several orders of magnitude, depending mostly on the thermal maturity of the sample (28). Therefore, we used the ratio of the sum of the 18α- and 18β-oleananes to 17α-hopane calculated from the convenient major metastable transition for both molecular types, m/z 412-191. The compound 17α-hopane, which is derived from stereoisomerization of hopanols present in most classes of bacteria (29), is found in all rock extracts and petroleum (30), except those that have been altered by heavy biodegradation or extreme thermal maturity (28). Furthermore, because of the similarity in structure and stability between oleanane and hopane, the effects of thermal maturation are minimized by use of a ratio.

The results of the oleanane analyses are broadly comparable with those found for fossil angiosperm occurrences (Fig. 2). The relative concentrations of oleanane to hopane, excluding the unusual Middle Jurassic and Neocomian occurrences (see later), begin low, near the detectable limit of 3% during the Early Cretaceous and steadily increase to a plateau during the latest Cretaceous. Then, during the Tertiary there is a major increase. The frequency values (Fig. 2) are low during the Jurassic and Early Cretaceous and increase steadily until the first part of the Late Cretaceous. The major increase occurs during the end of the Late Cretaceous, with a continued increase during the Tertiary.

There appears to be a relation between angiosperm taxonomic diversification and the concentration and frequency of oleanane occurrence. Yet there are several important differences. Whereas the major increases in taxonomic diversification of genera occur during the mid-Cretaceous (19, 20), major increases in oleanane frequency occur during the latest Cretaceous, and the major increases in oleanane concentrations are even later. We suggest two possibilities that could account for this.

First, the quantitative oleanane record may represent the chemical signature of the quantitative increase in angiosperm biomass through geological time. These oleanane data also suggest that increases in angiosperm biomass and ecological dominance occurred later than taxonomic diversification. This fits well with the suggestion that angiosperms had an herbaceous origin (22, 31) and with the data that large pieces of angiosperm wood are rare until the Late Cretaceous (32), but even then, floras seem to have been composed of predominately herbaceous angiosperms (33). This is sup-

Fig. 1. Analysis for oleananes relative to hopane using selected metastable transitions (MRM) compared with SIM GC-MS. (A) SIM GC-MS m/z 191 analysis of a Santonian marine mudstone core (70 to 80 f) extract saturate fraction from the Upper Hilliard Formation, Blazon Gap 39, Lincoln County, Wyoming, U.S.A. (sample no. 583). For chromatography we used He carrier gas and a 60-m DB-1 (J&W Scientific) fused silica capillary column on a Finnigan 4000 GC-MS system. The position of a possible oleanane peak is indicated. (B and C) MRM GC-MS m/z 412-397 and 369 analysis of Wyoming sample no. 583. Data were acquired with similar chromatographic conditions as in (A) except that we used H2 carrier gas on a VG Micromass model 7070H mass spectrometer GC-MS system. The single possible oleanane peak elutes between expected positions for elutions of 18α- and 18β-oleananes indicated by small arrows. The relatively large m/z 369 peak (C) for this compound indicates loss of a C2H5 side chain uncharacteristic of oleanane which is therefore considered not detected in this sample. (D) SIM GC-MS m/z 191 analysis of Campanian calcareous marine shale outcrop extract and saturates from the Lower Noparima Hill Formation, Trinidad (sample no. A384). Experimental conditions were the same as in (A) (E and F) MRM GC-MS m/z 412-397 and 369 analysis of Trinidad sample no. A384. Experimental conditions were the same as in (B and C). The doublet of 18α- and 18β-oleanane is best seen in m/z 412-397 (E) and is also observed in m/z 412-191 (43) which is used for quantitation. Absence of peaks at oleanane retention time in m/z 412-369 (F) confirms oleanane identification. The 17α-hopane peak is truncated at half height in each MRM chromatogram (B, C, E, and F). (G) Structures of compounds mentioned in the text, including some important mass spectral fragments monitored in (A) to (F). All have m/z 412 molecular ions.
ported by oleanane data suggesting relatively low but increasing biomass through the Cretaceous.

A second possibility is that the late oleanane increase reflects increased use of oleanane-type compounds by angiosperms, or increased diversification into subgroups that use them. Oleanane-type compounds are common and they are important defense compounds. This also suggests that angiosperm taxa containing oleanane-type compounds existed at least during the Early Cretaceous. The later major increases could be due to the greater abundance of these compounds in derived tricolpate dicotyledons and thus may reflect the similarity of the oleanane concentration curve to that of the diversification of modern families (Fig. 2) (34). Obviously both possibilities may coexist. Thus, the increased frequency of appearance and initial increase in concentration would be related to increases in biomass, whereas later increases would be due to diversification of oleanane-containing groups.

The oldest Cretaceous occurrence in our study is in an outcrop sample from the Paja Formation, Upper Magdalena Basin, Colombia, which is biostratigraphically constrained to late Hauterivian to late Berriasian (~Neocomian). Its oleanane ratio [oleananes/oleananes + hopanes] (0.13) is inordinately high compared with the angiosperm species diversity trend line (Fig. 2, feature b). This sample had the highest oleanane ratio among 10 outcrop samples analyzed from the Upper Magdalena region that range in age from late Campanian to Neocomian. A Late Oligocene side-wall core sample from the Lower Congo Basin, Angola (Fig. 2, feature c), shows the highest relative amounts of oleanane. This value could be related to an unusually high biomass of angiosperms in this region during the Late Oligocene.

A Middle Jurassic marine siltstone from West Siberia, Russia (35, 36), had relatively high concentrations of oleanane (Fig. 2, feature a). We also isolated 18a-oleanane from the extract of a Pennsylvanian coal ball, a calcium carbonate concretion containing well-preserved plant material from Illinois, United States (Fig. 3). Unlike the marine sediments, the coal ball represents localized input of vascular plants from a relatively narrow selection of species. Thus, at least two samples show oleanane that predates the earliest accepted angiosperm fossil. Implications of oleanane in these samples are unclear. Possibilities include (i) a separate lineage leading to the angiosperms [such as stem-angiophytes (14, 37)] left its chemical signature long before plants with unmistakably angiospermous features were preserved, (ii) that related angiosperm sister groups may have produced these oleanane-
type compounds (38), or (iii) that the signal is from other plants that rarely synthesize oleanane precursors.

Finally, this data set introduces the quantitative use of the oleanane parameter in assessing angiosperm input to petroleum sources. Petroleum with measurable oleanane has almost certainly been generated from Cretaceous or younger source rocks, whereas that with an oleanane ratio >0.2 was probably derived from Tertiary sources.

REFERENCES AND NOTES

26. Major features of the mass spectra of 17α-hopane, lupane, 18α-oleanane, and 18β-oleanane (Fig. 1D) are remarkably similar, and various isomers or stereoisomers of hopane and lupane may coelute with the oleananes. With MRM GC-MS it was possible to take advantage of a small transition from the m/z 412 molecular ion (M+) to the side-chain loss fragment m/z 269 that occurs in the spectra of 17α-hopane and lupane but is absent in the spectra of the oleananes. Other differences include a somewhat higher m/z 412–387 transition (loss of methyl) for the oleananes and the fact that oleananes typically occur as 18α and 18β isomers that can be partially resolved under the appropriate analytical conditions. The 18α to 18β isomer ratio can also be used as a maturity parameter (29, 30). MRM GC-MS analysis of a Wyoming shale (Fig. 1) detected an oleanane impositor, whereas analysis of a Trinidadian shale (Fig. 1, D to F) detected low concentrations of oleananes.
27. Because immature shales in the Niger Delta were shown to have somewhat higher relative amounts of oleananes than mature ones (40), we used artificial maturation by pyrolysis to minimize the possible problems of comparing immature and mature samples. Analytical pyrolysis was carried out on crushed whole rock with commercial Rock-Eval instruments in which maximum generation (Tmax) from the kerogen at temperatures <455°C is considered immature (28). Immature samples were crushed and pyrolyzed in evacuated sealed tubes at 300°C for 72 hours. Crushed rocks and pyrolyzed rocks were solvent extracted, and the extracts were fractionated by high-performance liquid chromatography (HPLC) as described (28). The HPLC-fractionated saturated hydrocarbons were analyzed for oleananes by MRM GC-MS (Fig. 1).
34. Oleanane-triterpenoids and triterpenoid sapoins are found throughout the angiosperms including monocot and dicot subclasses. They are most frequently found in members of the Dilleniaceae, Rosidae, and Asteridae (5, 47). In the poorly sampled Magnolidae (sensu Cronquist), these compounds are found throughout the herbaceous Ranunculales, although not in several woody magnolids (42). Further study of magnolid and gnetophyte phytchemistry is necessary to fully elucidate the distribution of oleanane-type compounds in living angiosperms. Finally, oleanane has been reported from the bennettitaleans, an extinct angiosperm sister group (38).
42. N. Basu and R. P. Rastogi, ibid. 6, 1249 (1967).
43. J. M. Moldowan et al., data not shown.
46. We thank S. R. Jacobson for helpful discussions, C. Y. Lee and Q. Hou for sample preparations, M. M. Petta and P. Novolny for data acquisition, and Chevron Petroleum Technology Company for support of the work and permission to publish.

22 February 1994; accepted 31 May 1994

SCIENCE • VOL. 265 • 5 AUGUST 1994 771