
 Joshua Ulrich | www.fossfinance.com

Profile R Code for Speed

Presented at Chicago RUG
May 14, 2014

 Joshua Ulrich | www.fossfinance.com

What is this “profiling” you speak of?

● Wikipedia:
...profiling is a form of dynamic program analysis that measures, for
example, the memory or time complexity of a program, the usage of
particular instructions, or frequency and duration of function calls.

● Why should you profile your code?
● Primary reason:

– You need your code to run faster or use less memory
● Secondary reasons:

– You're impatient
– Your code takes forever, and you have nothing else to do

 Joshua Ulrich | www.fossfinance.com

What is this “profiling” you speak of?

● The obligatory quote:

We should forget about small efficiencies, say about 97% of the time:
premature optimization is the root of all evil. Yet we should not pass
up our opportunities in that critical 3%. A good programmer will not
be lulled into complacency by such reasoning, he will be wise to look
carefully at the critical code; but only after that code has been
identified.

-Donald Knuth

 Joshua Ulrich | www.fossfinance.com

Before trying to make it faster...

● Think carefully and ask yourself:
● Is the potential decreased run-time worth my time?

– Will this function/code be called often?
– Am I often waiting for this function/code to run?

● How likely is it that I'll break something?
– Make a backup! Better yet, use version control.
– Test your changes to ensure identical output.

 Joshua Ulrich | www.fossfinance.com

Notes from Writing R Extensions

● Profiling imposes a small performance penalty
● Output files from profiling long runs at small

intervals can be very large
● Profiling short runs can give misleading results due

to garbage collection

 Joshua Ulrich | www.fossfinance.com

Notes from Writing R Extensions

● What is Rprof?

“The command Rprof is used to control profiling, and its
help page can be consulted for full details. Profiling
works by recording at fixed intervals (by default every
20 milliseconds) which line in which R function is being
used, and recording the results in a file (default
Rprof.out in the working directory). Then the function
summaryRprof or the command-line utility R CMD Rprof
Rprof.out can be used to summarize the activity.”

 Joshua Ulrich | www.fossfinance.com

Other things to keep in mind

● Special primitives will not be recorded by Rprof
● for, while, repeat loops; log, round, ||, &&
● several others (see R Internals, “Special Primitives”)
● For example:

 Joshua Ulrich | www.fossfinance.com

Other things to keep in mind

● <Anonymous> can be hard to find
● Caused by, e.g.: lapply(foo, function(x) x)
● Using named functions makes profiling easier

● To line profile when profiling a package, the
DESCRIPTION needs:
● ByteCompile: FALSE
KeepSource: TRUE

 Joshua Ulrich | www.fossfinance.com

Profiling quantstrat

● Code:
● DF_GE.R contains parameter setup
● DF_strat.R contains actual strategy code

– Calls to add.indicator, add.signal, add.rule,
applyStrategy, etc.

● Data:
● 1 instrument, 5-second data

– 2012-07-09 22:00:00/2014-01-01 22:00:00
– 6,353,883 rows, 13 columns

 Joshua Ulrich | www.fossfinance.com

Profiling quantstrat

● Calling Rprof:

● summaryRprof output: what are we looking at?
● self.time: only time in function, not function(s) it called
● total.time: self.time plus time in function(s) it called

● Low-hanging fruit: function calls with
● High total.time and high self.time/total.time
● High self.time

 Joshua Ulrich | www.fossfinance.com

Profiling quantstrat (rev 1532)

 Joshua Ulrich | www.fossfinance.com

Profiling quantstrat (rev 1532)

● Lots of time spent calling match, what is calling it?

 Joshua Ulrich | www.fossfinance.com

Profiling quantstrat (rev 1532)

● [.xts calls match, and we call [.xts a lot

 Joshua Ulrich | www.fossfinance.com

Profiling quantstrat (rev 1532)

● What can we do?
● Change [.xts?

– Very likely to break lots of things
● Call [.xts less?

– A good idea, but probably not easy to do
● Change how we call [.xts?

– Ah ha!

 Joshua Ulrich | www.fossfinance.com

Profiling quantstrat (rev 1532)

● Pass integer to [.xts instead of a POSIXct object
● Avoids the match call
● quantstrat's dimension-reduction loop already calculates

all the integer index values we need to evaluate

 Joshua Ulrich | www.fossfinance.com

Profiling quantstrat (rev 1561)

 Joshua Ulrich | www.fossfinance.com

Profiling quantstrat (rev 1561)

● What can we do?
● Make sigThreshold faster

– Don't call colnames<- unless we have to; it copies
– We only need the first cross; breaking a for loop may be faster

if the first cross is near the beginning of the vector
– R loop might have been faster, but C loop would be faster still

 Joshua Ulrich | www.fossfinance.com

Profiling quantstrat (rev 1561)

 Joshua Ulrich | www.fossfinance.com

Profiling quantstrat (rev 1561)

● Simple R/C functions to find the index value for the
first TRUE element for a given logical comparison
● .firstThreshold is very similar to sigTheshold

 Joshua Ulrich | www.fossfinance.com

Profiling quantstrat (rev 1561)

 Joshua Ulrich | www.fossfinance.com

Profiling quantstrat (rev 1562)

 Joshua Ulrich | www.fossfinance.com

Profiling quantstrat (rev 1562)

● What can we do?
● Call [.xts less

– Wasn't easy...
– Re-factored to store specific mktdata columns (e.g., price) in

an intermediate object before entering the main loop
● Move other checks outside the main loop

– Fairly easy...
– Fairly marginal improvement

 Joshua Ulrich | www.fossfinance.com

Conclusion

● Make good choices
● Don't waste your time trying to save computing time

● Look for “low-hanging fruit”
● Anticipate spending more time looking for the

bottleneck than writing a faster solution
● Don't get discouraged if your first attempt(s) don't

work as well as you expect

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

