
TokuMX VS MongoDB Bake Off
Based on a Primary AOL Use case

Monday, November 18, 2013

Agenda

• Scaling opportunities with MongoDB

• What is TokuMX and Why it exists

• What TokuMX does different from MongoDB

• Intent of the test

• The Test Plan

• Summary Results

• Detailed Results

• Conclusions

Why Are we here?
Scaling opportunities with MongoDB

• MongoDB databases tend to take up a lot of space
– Replicated field names
– No built in compression
– Fragmentation

• MongoDB does not support clustered indexes
– No clustered indexes means scanning through a single users data can

mean loading all pages in the DB

• MongoDB doesn’t really know how to do I/O
– Depends on the Virtual memory manager to do DB I/O for it. The

Virtual memory manager may or may not do this effectively.

• MongoDB has limited concurrency
– All database writes (insert, update and delete) require that the entire

database be locked. As long as the entire DB is in memory or the
update rate is low this is not a problem.

NO! Honestly Why are we here

• We have a MongoDB database with a couple
billion smallish very related documents that
get scanned in sets of a few thousand at a
time. A lot!

• Relational Thinking. With relational databases,
good! With MongoDB WRONG!

• Experienced developers use the tools they
know. Normalization is good, maybe? With
MongoDB WRONG!

What is TokuMX
Why does it exist

• A few years ago TokuTek built a KV storage engine for MySQL

• As the poplarity of MongoDB has grown people have been finding
performance and scaling problems with MongoDB .

• The Toku folks decided to mate their KV engine to MongoDB, TokuMX is
the result.

• TokuMX includes

– Native built in compression

– Clustered indexes to minimize IO when scanning significant parts of
the Database..

– Does its own I/O optimized to stream data, minimizing head
movement

– Talk on TokuTek Fractal key indexes
http://cdn.oreillystatic.com/en/assets/1/event/36/How%20TokuDB%2
0Fractal%20Tree%20Databases%20Work%20Presentation.pdf

What TokuMX does Differently

• Outside of the points on the previous slide

• Concurrency is performed at the document level
instead of locking the DB for each update.

• Indexes are all based on Fractal index technology. Not
B-Trees. More like Hbase or LevelDB sorted string
tables. Will not fragment like MongoDB does.

• Multi-document operations are transactional

• Collection Counts are not stored in the Name Space

• Name spaces are not fixed in size

• Each Collection and Index is stored in its own host file

What Toku Claims

• Database 66% to 80% smaller

• Update concurrency on larger databases up to
25X

• Limited Transactional support for multi
document operations

• More consistent operation times, especially
when the database significantly exceeds the
size of available host memory.

• Dramatically better I/O device utilization.

Intent of the test

• Determine if TokuMX could be used to replace
MongoDB to:

– Reduce cost

– Improve Reliability

– For Specific Use cases

High Level test plan

• Steal the data from a single database shard.

• 2025 unique Owners. To limit owner collection
sizes the 2025 Owners were altered slightly twice
to make 6075 Owners total.

• 16.8 million sample test documents.

• Part I

– Load the selected data in to both TokuMX 1.0 and
MongoDB 2.2.3 using the standard mongo import tool

– Compare sizes

High Level test plan

• Part 2
– Extract the owners
– Extract the documents removing all _id, owner and lid

references
– Using the extracted owners and documents load a database as

fast as possible to at least 1X memory size. _id is set to owner +
lid for each document written to the SummaryModel collection.

– Run a simulated full sync program against the db for both
MongoDB and TokuMX to determine size, operational
performance and resource consumption. No attempt is made to
make direct use of the _id field. Ordering and selection is done
on the basis of the owner_lid index.

– Replication is not included in this test.

Hardware/Software used for the tests

• Driver hosts – 6 Mid tier Virtual hosts 4X16
• Target hosts

– 1 Penguin 4X36 / 1 1TB Sata drive
– 1 High Tier VM 8X64 / 1 1.28 TB Virtual drive
– 1 IOPS3 HP DL380E/G8 12X144 / 1.2 TB Fusion IO MLC PCI card

• Software
– MongoDB 2.2.3
– TokuMX 1.0 RC
– Centos 6.2
– Python 2.6 and Pymongo 2.5.2 for drivers and data extractors
– Python, Gawk, Toga/argus and Excel for data analysis.

Results

• Size comparisons

• Load Rates

• Sync Test Results

Final Counts and Sizes (Part One
revisited)

Host
TokuMX
Documents

Mongo
Documents TokuMX Disk Size Mongo Disk Size

TokuMX
Effective
Stored Doc
size

Mongo
Effective
Stored Doc
size

Compression
Ratio

Penguin (C6-10) 103,333,547 36,671,606 50,600,148,992 57,155,511,296 490 1,559 3.18

Virtual 8 CPU 648,327,768 90,138,631 239,365,981,766 126,590,390,278 369 1,404 3.80

Fusion IO 12
CPU 1,034,420,568 206,498,714 367,999,544,380 274,694,406,167 356 1,330 3.74

All size data was taken at the end of the test

Load Period Comparison

Data loads

TokuMX
Inserts per
second

Mongo
Inserts per
second

TokuMX
Speedup

Penguin 3,211 N/A NA

High Tier 8 CPU 8,159 1,189 6.86

IOPS3 12,837 3,228 3.98

Average Sync Scan Rates

Sync Scan Rates

TokuMX
Docs per
second

Mongo
Docs per
second

TokuMX
Speedup

Penguin 261,685 137,911 1.90

High Tier 8 CPU 266,122 160,953 1.65

IOPS3 559,764 358,263 1.56

Scanned documents per second
(IOPS3)

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

1

1
3

2
5

3
7

4
9

6
1

7
3

8
5

9
7

1
0

9

1
2

1

1
3

3

1
4

5

1
5

7

1
6

9

1
8

1

1
9

3

2
0

5

2
1

7

2
2

9

2
4

1

2
5

3

2
6

5

2
7

7

2
8

9

3
0

1

3
1

3

3
2

5

3
3

7

3
4

9

3
6

1

3
7

3

3
8

5

3
9

7

4
0

9

4
2

1

4
3

3

4
4

5

4
5

7

4
6

9

4
8

1

4
9

3

5
0

5

5
1

7

D

o

c

u

m

e

n

t

s

p

e

r

s

e

c

o

n

d

10 Minute Benchmark intervals

IOPS3 Documents Scanned Per Second

TokuMX Documents Scanned per second MongoD Documents Scanned per second

Document Inserts Per second (IOPS3)

0

100

200

300

400

500

600

700

800

900

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

2
8

7

2
9

8

3
0

9

3
2

0

3
3

1

3
4

2

3
5

3

3
6

4

3
7

5

3
8

6

3
9

7

4
0

8

4
1

9

4
3

0

4
4

1

4
5

2

4
6

3

4
7

4

4
8

5

4
9

6

5
0

7

5
1

8

5
2

9

Document intserts per second

TokuMX inserts per second MongoD inserts per second

Persistent Storage Device Utilization
IOPS3

0

10

20

30

40

50

60

70

80

90

100

1

8
1

1
6

1

2
4

1

3
2

1

4
0

1

4
8

1

5
6

1

6
4

1

7
2

1

8
0

1

8
8

1

9
6

1

1
0

4
1

1
1

2
1

1
2

0
1

1
2

8
1

1
3

6
1

1
4

4
1

1
5

2
1

1
6

0
1

1
6

8
1

1
7

6
1

1
8

4
1

1
9

2
1

2
0

0
1

2
0

8
1

2
1

6
1

2
2

4
1

2
3

2
1

2
4

0
1

2
4

8
1

2
5

6
1

2
6

4
1

2
7

2
1

2
8

0
1

2
8

8
1

2
9

6
1

3
0

4
1

3
1

2
1

3
2

0
1

3
2

8
1

3
3

6
1

3
4

4
1

3
5

2
1

3
6

0
1

3
6

8
1

%
 b

u
sy

Minutes into benchmark test

Persistant storage device utilization

TolkuMX device Utilization MongoDB device Uiltization

CPU utilization IOPS3

0

10

20

30

40

50

60

70

80

90

100

1

1
1

6

2
3

1

3
4

6

4
6

1

5
7

6

6
9

1

8
0

6

9
2

1

1
0

3
6

1
1

5
1

1
2

6
6

1
3

8
1

1
4

9
6

1
6

1
1

1
7

2
6

1
8

4
1

1
9

5
6

2
0

7
1

2
1

8
6

2
3

0
1

2
4

1
6

2
5

3
1

2
6

4
6

2
7

6
1

2
8

7
6

2
9

9
1

3
1

0
6

3
2

2
1

3
3

3
6

3
4

5
1

3
5

6
6

3
6

8
1

3
7

9
6

3
9

1
1

4
0

2
6

4
1

4
1

4
2

5
6

4
3

7
1

4
4

8
6

4
6

0
1

4
7

1
6

4
8

3
1

4
9

4
6

5
0

6
1

5
1

7
6

5
2

9
1

C
P

U
 %

 B
u

sy

Minutes into benchmark

TokuMX vs Vanilla Mongo CPU Utilization

TokuMX CPU MongoDB CPU

TokuMX Challenges

• Db.collection.count() is very slow compared to
MongoDB. This is only for count with no
selection argument. --Minor

• Db.collection.stats() for large, close to one
billion document collections stats() can be
wildly misleading. --Minor

• TokuMX replication while functionally similar
to MongoDB is not compatible. E.G. TokuMX
servers cannot be replicas for MongoDB

Conclusions

• Space per document for MongoDB databases will be
reduced by at least 66%. Likely as much as 75%

• Host memory while important is no longer a serious
resource constraint. Now CPUs and to a lesser extent disk
I/O bandwidth are the principle constrained resources.

• We should be able to make full use of the available
persistent storage on each host.

• It is reasonable to assume that we can put 3X to 4X the
amount of data and associated workload on a host
compared to MongoDB.

• TokuMX provides more consistent operation times than
MongDB does, improving the customer experience.

• TokuMX has the potential to save significant hardware cost

