Introduction to Discrete-Event Simulation Using SimPy

Chun-Chieh Huang

DSP and Algorithm Design Department
Metanoia Communications Inc.

October 17, 2011
Outline

1. What is Simulation and Why do we need it?
2. What is Discrete-Event Simulation?
3. Example to Illustrate World Views
4. Introduction to SimPy
5. SimPy Example
What is Simulation and Why do we need it?

- **Simulation**
 - a computer program that creates a virtual environment in order to study physical problems
What is Simulation and Why do we need it?

- **Simulation**
 - a computer program that creates a virtual environment in order to study physical problems

- **When to use simulation**
 - hard to do real experiment, e.g. battle field, or banking system
What is Simulation and Why do we need it?

- **Simulation**
 - a computer program that creates a virtual environment in order to study physical problems

- **When to use simulation**
 - hard to do real experiment, e.g. battle field, or banking system
 - cheaper to do simulation, e.g. RTL simulation for IC design, or highway/freeway route planning
What is Simulation and Why do we need it?

- **Simulation**
 - a computer program that creates a virtual environment in order to study physical problems

- **When to use simulation**
 - hard to do real experiment, e.g. battle field, or banking system
 - cheaper to do simulation, e.g. RTL simulation for IC design, or highway/freeway route planning
 - analyzing bottleneck for current workflow
What is Simulation and Why do we need it?

- **Simulation**
 - a computer program that creates a virtual environment in order to study physical problems

- **When to use simulation**
 - hard to do real experiment, e.g. battle field, or banking system
 - cheaper to do simulation, e.g. RTL simulation for IC design, or highway/freeway route planning
 - analyzing bottleneck for current workflow

- **When not to use simulation**
 - more expensive to do simulation, e.g. simple harmonic motion
What is Simulation and Why do we need it?

- **Simulation**
 - a computer program that creates a virtual environment in order to study physical problems

- **When to use simulation**
 - hard to do real experiment, e.g. battle field, or banking system
 - cheaper to do simulation, e.g. RTL simulation for IC design, or highway/freeway route planning
 - analyzing bottleneck for current workflow

- **When not to use simulation**
 - more expensive to do simulation, e.g. simple harmonic motion
 - problems that can be analyzed by pencil and paper
Categories of Simulation

- Continuous or discrete
 - State variable is continuous, e.g. weather systems
 - State variable is discrete, e.g. number of customers
Categories of Simulation

- Continuous or discrete
 - State variable is continuous, e.g. weather systems
 - State variable is discrete, e.g. number of customers

- Static or dynamic
 - Static: represents a system at a particular point of time
 - called Monte-Carlo Simulation [2]
 - Dynamic: represents systems as they change over time
 - e.g. banking system from 9:00 AM to 5:00 PM
Categories of Simulation

- **Continuous or discrete**
 - State variable is continuous, e.g. weather systems
 - State variable is discrete, e.g. number of customers

- **Static or dynamic**
 - Static: represents a system at a particular point of time called Monte-Carlo Simulation [2]
 - Dynamic: represents systems as they change over time e.g. banking system from 9:00 AM to 5:00 PM

- **Deterministic or stochastic**
 - Deterministic: contains no random variable
 - Stochastic: has one or more random variables
What is Discrete-Event Simulation?

- Simulation of weather system is **continuous**.
- Simulation of queue in a post office is **discrete**.
 - Number of customers in any time is discrete.
 - Simulation for this kind of systems is called discrete-event simulation.
- Mostly, but not limited to, queueing systems
 - factory work flow
 - freeway traffic simulation
 - network traffic simulation
Discrete-Event Simulation World Views

- Activity-oriented
 - fixed increment of time
 - time-consuming
Activity-oriented
- fixed increment of time
- time-consuming

Event-oriented
- on each event, generate next event and put into event queue
- simulation time advances to next event
- faster than activity-oriented
Discrete-Event Simulation World Views

- **Activity-oriented**
 - fixed increment of time
 - time-consuming

- **Event-oriented**
 - on each event, generate next event and put into event queue
 - simulation time advances to next event
 - faster than activity-oriented

- **Process-oriented**
 - abstract one object into a process
 - easier to maintain in the end
Example to Illustrate World Views

- Simulating a post office with only one clerk
- Customers come in at random time and wait if the clerk is already serving
- Clerk serves each customer for a random period of time
Discrete-Event Simulation World Views

- **Activity-oriented**
 - fixed increment of time
 - time-consuming

- **Event-oriented**
 - on each event, generate next event and put into event queue
 - simulation time advances to next event
 - faster than activity-oriented

- **Process-oriented**
 - abstract one object into a process
 - easier to maintain in the end
Activity-Oriented Discrete-Event Simulation

Simulation starts!

Gen 1st arr at 2.6

Check events: 1st arr at 2.6
Activity-Oriented Discrete-Event Simulation

Check events: 1st arr at 2.6
Check events: 1st arr at 2.6
Introduction to Discrete-Event Simulation Using SimPy

Chun-Chieh Huang

What is Simulation and Why do we need it?

What is Discrete-Event Simulation?

Example to Illustrate World Views

Introduction to SimPy

SimPy Example

References

Activity-Oriented Discrete-Event Simulation

Check events: 1st arr at 2.6
Introduction to Discrete-Event Simulation Using SimPy

What is Simulation and Why do we need it?

What is Discrete-Event Simulation?

Example to Illustrate World Views

Introduction to SimPy

SimPy Example

References

Activity-Oriented Discrete-Event Simulation

Check events: 1st arr at 2.6
Activity-Oriented Discrete-Event Simulation

Check events: 1st arr at 2.6
Check events: 1st arr at 2.6...
Activity-Oriented Discrete-Event Simulation

First arrival!
Activity-Oriented Discrete-Event Simulation

5. Calculate service time, end at 4.0

Calculate next arrival at 3.5
Activity-Oriented Discrete-Event Simulation

Check events: 2nd arrival at 3.5
Introduction to Discrete-Event Simulation Using SimPy

Chun-Chieh Huang

What is Simulation and Why do we need it?

What is Discrete-Event Simulation?

Example to Illustrate World Views

Introduction to SimPy

SimPy Example

References

Activity-Oriented Discrete-Event Simulation

Check events: 2nd arrival at 3.5
Introduction to Discrete-Event Simulation Using SimPy

Chun-Chieh Huang

What is Simulation and Why do we need it?

What is Discrete-Event Simulation?

Example to Illustrate World Views

Introduction to SimPy

SimPy Example

References

Activity-Oriented Discrete-Event Simulation

Check events: 2nd arrival at 3.5
Activity-Oriented Discrete-Event Simulation

Check events: 2nd arrival at 3.5
Check events: 2nd arrival at 3.5
Activity-Oriented Discrete-Event Simulation

Check events: 2nd arrival at 3.5
What is Simulation and Why do we need it?

What is Discrete-Event Simulation?

Example to Illustrate World Views

Introduction to SimPy

SimPy Example

References

Introduction to Discrete-Event Simulation Using SimPy

Chun-Chieh Huang

Check events: 2nd arrival at 3.5
Check events: 2nd arrival at 3.5
Activity-Oriented Discrete-Event Simulation

Check events: 2nd arrival at 3.5...
Activity-Oriented Discrete-Event Simulation

Second arrival!
Activity-Oriented Discrete-Event Simulation

Calculate next arrival at ...
What is Simulation and Why do we need it?

What is Discrete-Event Simulation?

Example to Illustrate World Views

Introduction to SimPy

SimPy Example

References
Activity-Oriented Discrete-Event Simulation

Check events: service end at 4.0
Check events: service end at 4.0...
Discrete-Event Simulation World Views

- **Activity-oriented**
 - fixed increment of time
 - time-consuming

- **Event-oriented**
 - on each event, generate next event and put into event queue
 - simulation time advances to next event
 - faster than activity-oriented

- **Process-oriented**
 - abstract one object into a process
 - easier to maintain in the end
Event-Oriented Discrete-Event Simulation

Simulation starts!

2.6: 1st arr
First arrival!

2.6: 1st arr
Event-Oriented Discrete-Event Simulation

3.5: 2nd arr 4.0: 1st arr end

Calculate next arrival at 3.5

Calculate service time, end at 4.0

Introduction to Discrete-Event Simulation Using SimPy

Chun-Chieh Huang

What is Simulation and Why do we need it?

What is Discrete-Event Simulation?

Example to Illustrate World Views

Introduction to SimPy

SimPy Example

References
Introduction to Discrete-Event Simulation Using SimPy

Chun-Chieh Huang

What is Simulation and Why do we need it?

What is Discrete-Event Simulation?

Example to Illustrate World Views

Introduction to SimPy

SimPy Example

References

Event-Oriented Discrete-Event Simulation

Second arrival!

0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6
3.5: 2nd arr 4.0: 1st arr end
Event-Oriented Discrete-Event Simulation

4.0: 1st arr end 5.0: 3rd arr
Event-Oriented Discrete-Event Simulation

4.0: 1st arr end
5.0: 3rd arr

End service of 1st arrival.
Discrete-Event Simulation World Views

- **Activity-oriented**
 - fixed increment of time
 - time-consuming

- **Event-oriented**
 - on each event, generate next event and put into event queue
 - simulation time advances to next event
 - faster than activity-oriented

- **Process-oriented**
 - abstract one object into a process
 - Arrival process for customers, or A
 - Clerk process, or S
 - Event manager, or E
 - easier to maintain in the end
Introduction to Discrete-Event Simulation Using SimPy
Chun-Chieh Huang

What is Simulation and Why do we need it?
What is Discrete-Event Simulation?

Example to Illustrate World Views
Introduction to SimPy
SimPy Example
References

Process-Oriented Discrete-Event Simulation

Simulation starts!

A: Gen 1st arr at 2.6
S:
E: Add one event of 2.6
Introduction to Discrete-Event Simulation Using SimPy

Chun-Chieh Huang

What is Simulation and Why do we need it?

What is Discrete-Event Simulation?

Example to Illustrate World Views

Introduction to SimPy

SimPy Example

References

Process-Oriented Discrete-Event Simulation

First arrival!

A: Add customer to queue

S:

E: Process event, wake A up
Introduction to Discrete-Event Simulation Using SimPy

What is Simulation and Why do we need it?

What is Discrete-Event Simulation?

Example to Illustrate World Views

Introduction to SimPy

SimPy Example

References
Introduction to Discrete-Event Simulation Using SimPy

Chun-Chieh Huang

What is Simulation and Why do we need it?

What is Discrete-Event Simulation?

Example to Illustrate World Views

Introduction to SimPy

SimPy Example

References

Process-Oriented Discrete-Event Simulation

A:

S: Serv, calc serv T at 4.0

E: Proc event of 2.6, add Ev 4.0
What is Simulation and Why do we need it?

What is Discrete-Event Simulation?

Example to Illustrate World Views

Introduction to SimPy

SimPy Example

References
What is Simulation and Why do we need it?

What is Discrete-Event Simulation?

Example to Illustrate World Views

Introduction to SimPy

SimPy Example

References
Introduction to Discrete-Event Simulation Using SimPy

Chun-Chieh Huang

What is Simulation and Why do we need it?

What is Discrete-Event Simulation?

Example to Illustrate World Views

Introduction to SimPy

SimPy Example

References
Introduction to Discrete-Event Simulation Using SimPy

Chun-Chieh Huang

What is Simulation and Why do we need it?

What is Discrete-Event Simulation?

Example to Illustrate World Views

Introduction to SimPy

SimPy Example

References

Process-Oriented Discrete-Event Simulation

A:

S: Serv 2nd arr.

E: Add end serv event for 2nd arr.
Implementing Discrete-Event Simulation

- Use your own C/C++ implementation
 - takes time to write simulation engine and algorithm code
 - hard to debug, especially for event manager
 - not very convincing
Implementing Discrete-Event Simulation

- Use your own C/C++ implementation
 - takes time to write simulation engine and algorithm code
 - hard to debug, especially for event manager
 - not very convincing

- Use generalized simulation library, or language
 - SIMULA programming language
 - C++SIM or JavaSIM [1]
 - SimEvents in Simulink/MATLAB
 - SimPy [5]
Implementing Discrete-Event Simulation

- Use your own C/C++ implementation
 - takes time to write simulation engine and algorithm code
 - hard to debug, especially for event manager
 - not very convincing
- Use generalized simulation library, or language
 - SIMULA programming language
 - C++SIM or JavaSIM [1]
 - SimEvents in Simulink/MATLAB
 - SimPy [5]
- Use special purpose simulation packages
 - ns-3 for network simulation [4]
Introduction to SimPy

- Uses Python for modeling
 - Python is a scripting language like MATLAB, but faster!
 - Python is very easy to write and very beautiful!
Introduction to SimPy

- Uses Python for modeling
 - Python is a scripting language like MATLAB, but faster!
 - Python is very easy to write and very beautiful!
- Process-oriented Discrete Event Simulation Language
 - easier to write model
 - provides event manager implementation
Introduction to SimPy

- Uses Python for modeling
 - Python is a scripting language like MATLAB, but faster!
 - Python is very easy to write and very beautiful!

- Process-oriented Discrete Event Simulation Language
 - easier to write model
 - provides event manager implementation

- Uses coroutine to suspend/resume process
 - will be referred to as thread in this presentation
 - guarantees order of execution
 - cannot run on parallel machine
SimPy Terminology: Classes

Process
- simulates an entity which evolves in time, e.g. a customer who needs to be served by a clerk
- referred to as **thread** in [3]
SimPy Terminology: Classes

- **Process**
 - simulates an entity which evolves in time, e.g. a customer who needs to be served by a clerk
 - referred to as **thread** in [3]

- **Resource**
 - simulates something to be queued, e.g. the waiting list
activate() used to mark a thread as runnable when it is first created
SimPy Terminology: Functions

- **activate()**: used to mark a thread as runnable when it is first created.
- **simulate()**: starts the simulation.
SimPy Terminology: Functions

activate() used to mark a thread as runnable when it is first created

simulate() starts the simulation

yield hold put current thread into suspension for a certain amount of time
activate() used to mark a thread as runnable when it is first created

simulate() starts the simulation

yield hold put current thread into suspension for a certain amount of time

yield request requests for a given resource
SimPy Terminology: Functions

- **activate()**: used to mark a thread as runnable when it is first created.
- **simulate()**: starts the simulation.
- **yield hold**: put current thread into suspension for a certain amount of time.
- **yield request**: requests for a given resource.
- **yield release**: used to indicate that current thread no longer need the given resource.
SimPy Terminology: Functions

- `activate()` used to mark a thread as runnable when it is first created
- `simulate()` starts the simulation
- `yield hold` put current thread into suspension for a certain amount of time
- `yield request` requests for a given resource
- `yield release` used to indicate that current thread no longer need the given resource
- `yield passivate` put current thread into suspension and wait until awakened by some other thread
SimPy Terminology: Functions

activate() used to mark a thread as runnable when it is first created
simulate() starts the simulation
yield hold put current thread into suspension for a certain amount of time
yield request requests for a given resource
yield release used to indicate that current thread no longer need the given resource
yield passivate put current thread into suspension and wait until awakened by some other thread
reactivate() awakes a previously-passivated thread
activate() used to mark a thread as runnable when it is first created

simulate() starts the simulation

tyield hold put current thread into suspension for a certain amount of time

tyield request requests for a given resource

tyield release used to indicate that current thread no longer need the given resource

tyield passivate put current thread into suspension and wait until awakened by some other thread

reactivate() awakes a previously-passivated thread

cancel() cancels all the events associated with a previously-passivated thread
SimPy Example

- Scenario
 - A post office with only one clerk.
 - Customers arrival is poisson process, i.e. inter-arrival time is exponential distribution.
 - Service time is also poisson process.

- Process
 - Arrival
 - Clerk

- Queue is managed by ourselves.
Arrival Process

class ArrivalClass(Process):
 ArrivalRate = 1/1.0 # reciprocal of mean arrival time

 def __init__(self):
 Process.__init__(self)

 def Run(self):
 while 1:
 InterArrivalTime = G.Rnd.expovariate(ArrivalClass.ArrivalRate)
 yield hold, self, InterArrivalTime
 C = Customer()
 ClerkClass.Queue.append(C) # a customer arrives
 G.NumCustomers += 1

 if ClerkClass.Idle != []: # Is there any clerk idle?
 reactivate(ClerkClass.Idle[0]) # Yes, wake him/her up
Clerk Process

class ClerkClass(Process):
 ServiceRate = 1/1.2
 MaxQueueLength = 0
 Queue = []
 Idle = []
 Busy = []
 NumDone = 0
 def __init__(self):
 Process.__init__(self)
 ClerkClass.Idle.append(self) # Initially idle
 def Run(self):
 while 1:
 yield passivate, self # wait until awaken by customers
 ClerkClass.Idle.remove(self)
 ClerkClass.Busy.append(self) # going to be busy
 while ClerkClass.Queue != []:
 C = ClerkClass.Queue.pop() # call next customer in line
 if len(ClerkClass.Queue) > ClerkClass.MaxQueueLength:
 ClerkClass.MaxQueueLength = len(ClerkClass.Queue)
 # Start service the customer
 ServiceTime = G.Rnd.expovariate(ClerkClass.ServiceRate)
 yield hold, self, ServiceTime
 C.endService()
 G.TotalWaitingTime += C.WaitingTime
 ClerkClass.NumDone += 1
 del C
 ClerkClass.Busy.remove(self)
 ClerkClass.Idle.append(self)
Live Demo
Purpose List below parameters to prove that your work is repeatable.

RNG Random number generator method
- Linear Congruential Method
 - oldest and best well known
- Mersenne Twister
 - designed with simulation purpose in mind
 - used to implement random library in python after version 2.5

RNG Random number generator seed
Simulation is a powerful tool to study physical problems with cheaper cost.

SimPy provides process-oriented DES framework to write simulation easily and reasonably fast.
References

Q & A