
Tachyon: Reliable File Sharing at Memory-

Speed Across Cluster Frameworks

Haoyuan Li, Ali Ghodsi, Matei Zaharia,

Scott Shenker, Ion Stoica

UC Berkeley

Outline

Outline | Motivation| Design | Results| Status| Future

• Motivation

• System Design

• Preliminary Results

• Alpha Status

• Future Direction

Outline| Motivation | Design | Results| Status| Future

Memory is King

Memory Trend

Outline| Motivation | Design | Results| Status| Future

• RAM throughput increasing exponentially

Disk Trend

Outline| Motivation | Design | Results| Status| Future

• Disk throughput increasing slowly

Consequence

Outline| Motivation | Design | Results| Status| Future

• Memory locality key to achieving

– Interactive queries

– Fast query response times

Current Big Data Eco-system

Outline| Motivation | Design | Results| Status| Future

• Many frameworks already leverage memory

– e.g. Spark, Shark, and other projects

• File sharing between jobs replicated to disk

– Replication enables fault-tolerance

• Problem

– Disk replication becomes main bottleneck as more
frameworks move to memory

Tachyon Project

Outline| Motivation | Design | Results| Status| Future

• Reliable file sharing at memory-speed across
cluster frameworks/jobs

• Challenge

– How to achieve reliability without replication?

Idea

Outline| Motivation | Design | Results| Status| Future

• File system keeps track of lineage

– Metadata about the jobs that created the files

• Keep one in-memory copy of files

– Upon failure use lineage to recompute files

– High-throughput and reliability at the same time

• File system with integrated workflow manager

– Filesystem can launch jobs to recompute data

Spark & Shark with Tachyon

Outline| Motivation | Design | Results| Status| Future

• Shark and Spark use Tachyon as a RDD store

• Benefits of using Tachyon

– Memory-throughput file sharing between jobs

– Fault-isolation between jobs (JVM restart/crash)

Tachyon

Outline| Motivation | Design | Results| Status| Future

System Architecture

Outline| Motivation | Design | Results| Status| Future

Lineage

Outline| Motivation | Design | Results| Status| Future

Generic Lineage API

Outline| Motivation | Design | Results| Status| Future

• Binary program

• Configuration

• Input Files List

• Output Files List

• Dependency Type

Fault Recovery Time

Outline| Motivation | Design | Results| Status| Future

Recomputation Cost?

An Example

Outline| Motivation | Design | Results| Status| Future

Asynchronous Checkpointing

Outline| Motivation | Design | Results| Status| Future

1. Better than using existing solutions even

under failure.

2. Bounded recovery time.

3. Failure is relatively rare.

Implementation

Outline| Motivation | Design | Results| Status| Future

JAVA + Maven + Thrift

Spark Sequential Read

Outline| Motivation | Design | Results | Status| Future

Spark Sequential Write

Outline| Motivation | Design | Results | Status| Future

Simulated Workflow using Spark

Outline| Motivation | Design | Results | Status| Future

Conviva Spark Query (I/O intensive)

Outline| Motivation | Design | Results | Status| Future

More than

75x speedup

Tachyon

outperforms

Spark cache

Conviva Spark Query (less I/O intensive)

Outline| Motivation | Design | Results | Status| Future

12x speedup

GC kicks

in earlier

for Spark

cache

Alpha Status

Outline| Motivation | Design | Results | Status | Future

• Releases

– Developer Preview: V0.2.0 (4/10/2013), V0.2.1(4/25/2013)

• Step one in our approach:

– First read of files cached in-memory

– Writes go synchronously to HDFS (No lineage

information in Developer Preview release)

– Spark and MapReduce can run without any code

change (ser/de becomes the new bottleneck)

– data=SparkContext.textfile(HdfsPath)

Alpha Status

Outline| Motivation | Design | Results | Status | Future

• Releases

– Developer Preview: V0.2.0 (4/10/2013), V0.2.1(4/25/2013)

• Step one in our approach:

– First read of files cached in-memory

– Writes go synchronously to HDFS (No lineage

information in Developer Preview release)

– Spark and MapReduce can run without any code

change (ser/de becomes the new bottleneck)

– data=SparkContext.textfile(TachyonPath)

Current Features

Outline| Motivation | Design | Results | Status | Future

• Java-like file API

• Compatible with Hadoop

• Native support for raw tables

• Pluggable underlayer file system

• Command line interaction

• Web user interface

• WhiteList, PinList

Shark Close Integration

Outline| Motivation | Design | Results | Status | Future

• Next Shark release can store tables in Tachyon

(fast columnar Ser/De).

Spark Cache Tachyon

Table Full Scan 1.4 sec 1.5 sec

GroupBy (10 GB
Shark Memory)

50 – 90 sec 45 – 50 sec

GroupBy (15 GB
Shark Memory)

44 – 48 sec 37 – 45 sec

Web User Interface (Demo)

Outline| Motivation | Design | Results | Status | Future

http://ec2-50-17-67-227.compute-1.amazonaws.com:19999/home

http://ec2-50-17-67-227.compute-1.amazonaws.com:19999/home
http://ec2-50-17-67-227.compute-1.amazonaws.com:19999/home
http://ec2-50-17-67-227.compute-1.amazonaws.com:19999/home
http://ec2-50-17-67-227.compute-1.amazonaws.com:19999/home
http://ec2-50-17-67-227.compute-1.amazonaws.com:19999/home
http://ec2-50-17-67-227.compute-1.amazonaws.com:19999/home
http://ec2-50-17-67-227.compute-1.amazonaws.com:19999/home
http://ec2-50-17-67-227.compute-1.amazonaws.com:19999/home
http://ec2-50-17-67-227.compute-1.amazonaws.com:19999/home
http://ec2-50-17-67-227.compute-1.amazonaws.com:19999/home
http://ec2-50-17-67-227.compute-1.amazonaws.com:19999/home

Web User Interface (Demo)

Outline| Motivation | Design | Results | Status | Future

Jenkins

Outline| Motivation | Design | Results | Status | Future

https://amplab.cs.berkeley.edu/jenkins/view/Tachyon/

https://amplab.cs.berkeley.edu/jenkins/view/Tachyon/

Short Term Roadmap

Outline| Motivation | Design | Results | Status | Future

• Improve the current implementation. (e.g: more

FS method implementation; enhance unit tests;

enrich code document and wiki.)

• Enhance HDFS FS interface Implementation.

• Master fault tolerant.

• Efficient Ser/De support.

• Different components performance

benchmarks.

More Information

Outline| Motivation | Design | Results | Status | Future

• http://tachyon-project.org/

• https://github.com/amplab/tachyon

• https://github.com/amplab/tachyon/wiki

• Run Tachyon Locally:

https://github.com/amplab/tachyon/wiki/Runni
ng-Tachyon-Locally

http://tachyon-project.org/
http://tachyon-project.org/
http://tachyon-project.org/
http://tachyon-project.org/
http://tachyon-project.org/
https://github.com/amplab/tachyon
https://github.com/amplab/tachyon
https://github.com/amplab/tachyon/wiki
https://github.com/amplab/tachyon/wiki
https://github.com/amplab/tachyon/wiki
https://github.com/amplab/tachyon/wiki/Running-Tachyon-Locally
https://github.com/amplab/tachyon/wiki/Running-Tachyon-Locally
https://github.com/amplab/tachyon/wiki/Running-Tachyon-Locally
https://github.com/amplab/tachyon/wiki/Running-Tachyon-Locally
https://github.com/amplab/tachyon/wiki/Running-Tachyon-Locally
https://github.com/amplab/tachyon/wiki/Running-Tachyon-Locally
https://github.com/amplab/tachyon/wiki/Running-Tachyon-Locally

UC Berkeley

Thank

you!

