
Testable C++
Michael Feathers

mfeathers@objectmentor.com

mailto:mfeathers@objectmentor.com

Rationale

• Much existing C++ code is hard to
test

• There are practices and constructs
which make testing hard

• Testability can not be an
afterthought

Rationale

TEST(dispatcher_tests,remap_reallocates)TEST(dispatcher_tests,remap_reallocates)
{{
 TCAddressMap addr_map;TCAddressMap addr_map;
 dispatcher_t dispatcher(addr_map);dispatcher_t dispatcher(addr_map);

 dispatcher.remap();dispatcher.remap();
 CHECK_EQUAL(0, addr_map.size());CHECK_EQUAL(0, addr_map.size());
}}

Background

• Not much documented advice on C++
testing

• Resurgence of interest in unit
testing with Agile

• Plethora of frameworks: CppUnit,
CppUTest,UnitTest++

Concepts

• All testing is feature testing

• The terms unit, component and system
determine scope, not coverage

• Unit tests greatly enhance
understandability

Nomenclature

• CUT - Code Under Test

• TUF - Test Unfriendly Functionality

• TUC - Test Unfriendly Constructs

Code Under Test
(CUT)

• The CUT is the actual path you
exercise in a test.

• It is not a “unit” or “component”

• It can be big or small

• “Unit” or “component” is the length
of the path

Test Unfriendly Feature
(TUF)

• Some portion of code that thwarts
unit testing

• Often it causes some side effect

• Or prevents sensing of an effect

Test Unfriendly Feature
(TUF)

TEST(dispatcher_tests,remap_reallocates)TEST(dispatcher_tests,remap_reallocates)
{{
 TCAddressMap addr_map;TCAddressMap addr_map;
 dispatcher_t dispatcher(addr_map);dispatcher_t dispatcher(addr_map);

 dispatcher.remap();dispatcher.remap();
 CHECK_EQUAL(0, addr_map.size());CHECK_EQUAL(0, addr_map.size());
}}

Test Unfriendly Feature
(TUF)

• Use of a third party library

• Use of the file system

• Use of the network

• Use of a database

• Expensive operations (> 100 millisec)

The Goal

• Tests should run fast and help us
understand what works and what
doesn’t

• TUFs are the biggest impediment to
fast testing

Seams

• There are places where it is easier
to break dependencies

C++ Seams (in order)

• Preprocessing seam

• Template instantiation seam

• Link Seam

• Object Seam

Test Unfriendly Construct
(TUC)

• C++ Language constructs which prevent
or impede testing

• They don’t always, but you have to
pay attention to their use

• Don't put TUFs inside TUCs!

• Testability involves design choices

TUC1 Bare Classes

• Bare classes are classes without
abstract base classes (ABCs)

• ABCs (like interfaces in Java) reduce
dependency and allow mocking when
needed

TUC1 Bare Classes

class ip_connection {class ip_connection {
public:public:
 void release();void release();

privateprivate

};};

TUC1 Bare Classes

class ip_connection : public connection {class ip_connection : public connection {
public:public:
 virtual void release();virtual void release();
 virtual ~ip_connection();virtual ~ip_connection();

privateprivate

};};

TUC1 Bare Classes

// Abstract base class (interface)// Abstract base class (interface)

class connection {class connection {
public:public:
 virtual void release() = 0;virtual void release() = 0;
 virtual ~ip_connection() = 0;virtual ~ip_connection() = 0;

};};

TUC2 RAII Objects

• RAII is useful, but if the thing that
you are acquiring is a TUF, you are
out of luck

• Stack-based semantics make them hard
to replace

TUC2 RAII Objects

void function() {void function() {
 ucs_file file(“RS1”);ucs_file file(“RS1”);

 file << pend_message;file << pend_message;
}}

void function() {void function() {
 ucs_file file(ucs_impl, “RS1”);ucs_file file(ucs_impl, “RS1”);

 file << pend_message;file << pend_message;
}}

TUC3 Multi-Purpose Files

• It’s bad form to put more than one
class in a file.

• When you do, you make it harder to
test classes independently.

• The context of each is polluted by
the other.

TUC3 Multi-Purpose Files

#include “grog.h”#include “grog.h”
#include “groger.h”#include “groger.h”

class Fizzle { .. };class Fizzle { .. };
class Floop { ... };class Floop { ... };
class Fing { ... };class Fing { ... };

TUC4 Free Functions

• Functions that are not associated
with any class

• They can help encapsulation but never
use them to hide a TUF (or potential
TUF)

• Impossible to replace unless in their
own linkage unit

TUC4 Free Functions

int perimeter(const std::vector<point>& points) {int perimeter(const std::vector<point>& points) {

}}

double arctan(double value) { ...}double arctan(double value) { ...}

void update_host(char *id, const udp_packet& packet) {void update_host(char *id, const udp_packet& packet) {

}}

TUC5 Unnamed Namespace

• The unnamed namespace is another
place to hide things.

• Scope is limited to the file.

• Unable to mock for testing

TUC5 Unnamed Namespace

namespace {namespace {
 device_descriptor startup_descs;device_descriptor startup_descs;
};};

void init() {void init() {

 conn->send(startup_descs.align_parms);conn->send(startup_descs.align_parms);

}}

TUC6 Non-Virtual
Functions

• We often make functions non-virtual for
performance reasons and for documentary
reasons

• In many languages, all functions are
virtual by default

• Better choice. Makes mocking easier

• Reference objects that hide TUFs should be
virtual-enabled

TUC6 Non-Virtual
Functions

class ip_connection {class ip_connection {
public:public:
 void release() {void release() {
 // (TUF) We’re caught!// (TUF) We’re caught!
 }}

privateprivate

};};

TUC7 Internal Instantiation

• Objects directly instantiated in
other objects are hard to replace.

• Factories are better

• Dependency Injection Pattern is
gaining acceptance

TUC7 Internal Instantiation

void router::dispatch(const char *msg, void router::dispatch(const char *msg,
 const host_info& host) const host_info& host)
{{

 addr_resolver resolver;addr_resolver resolver;
 ip = resolver.get_iptrans(host);ip = resolver.get_iptrans(host);

}}

TUC8 Internal Definition

• C++ let you define nested classes

• Not a good idea if you have a TUF

• No way to replace except via template
hoisting

namespace boost {

 class any {
 public:
 class placeholder {
 ...
 };
 private:
 ...
 };
}

TUC8 Internal Definition

TUC8 Internal Definition

class module {class module {
public:public:

private:private:
 class module_builder {class module_builder {

 };};
};};

TUC8 Internal Definition

template <typename BUILDER> class module_impl {template <typename BUILDER> class module_impl {
public:public:

private:private:

};};

typedef module_impl<module_builder> module;typedef module_impl<module_builder> module;

TUC9 Long Functions

• The biggest testability problem

• Long Functions don’t just hide TUFs,
they are TUFs.

• Functions should have a single
responsibility

TUC9 Long Functions

void process_t::inner_action() {void process_t::inner_action() {

 addr1 = bind(addr2);addr1 = bind(addr2);

 routing_table[addr2].push_back(fair_opt);routing_table[addr2].push_back(fair_opt);

 routing_table.clear();routing_table.clear();

};};

TUC10 Templated Member
Functions

• A sneaky hole in the semantics of
templates

• Template member functions can not be
replaced

TUC10 Templated Member
Functions

struct foo {struct foo {
 template<typename T> bool do_it(T& t) {template<typename T> bool do_it(T& t) {

 }}
};};

TUC11 Static Variables

• They are like glue

• They make repeatability of tests a
real problem

TUC11 Static Variables

router_t router_t::get_instance() {router_t router_t::get_instance() {
 static router_t router;static router_t router;
 return router;return router;
}}

TUC12 Lack Of Unit Tests

• All of these problems can be easily
solved if we simply write tests as we
develop our code

• If a test is hard to write, that
means that we have to find a
different design which is testable

• It’s always possible

