
Maxima CAS presentation 2015-12-01

Chelton Evans



Abstract

Maxima is a popular copyleft CAS (Computer Algebra System)
which can be used for both symbolic and numerical calculation.
Chelton Evans will present a series of examples on Maxima’s
programming language from a pragmatic view (cheat sheet
provided) to show how Maxima can be used: For example as a
calculator, graph plotting, and solving a quadratic equation. He
will offer an introduction to solving an equation f (x) = 0 and why
this is important. e.g. if a cannon fires - where does it hit? He will
also provide an introduction to Newton’s method for calculating
the square root of two and a more complex solver, Newton’s
method with third order convergence, with an elementary
discussion on numerical solvers and their merit.



Introduction

Introducing Maxima: examples; working towards a research
problem investigating 3rd order convergence; showing how to go
about forming and solving problems in a CAS environment.

Reference: G. Polya, ”How To Solve It” - the best introduction to
computer science for problem solving.



Computer Algebra System (CAS)

• Prior to CAS, maths was implemented in other computer
languages e.g. basic Tandy PC-8
• HP reverse Polish, high level programming on the stack HP-28S
• the majority of mathematical research uses CAS
• Different CAS systems have similar functionality but very
different usability making the knowledge hard to transfer

http://wikipedia.org/wiki/Tandy_Pocket_Computer
http://www.wikipedia.org/wiki/HP-28


Example

Inside a cell, enter the commands, multiple commands with the
Enter key. To evaluate shift + enter key.

expand((x + y)5)

y5 + 5 x y4 + 10 x2 y3 + 10 x3 y2 + 5 x4 y + x5



Maxima availability

• maxima.sourceforge.net
• # apt-get install maxima
• # apt-get install wxMaxima
• MaximaOnAndroid
• Platforms: *nix, Windows, Android

http://maxima.sourceforge.net/


Why use Maxima?

Mathematical laboratory - problem solving, ”How to solve it” -
Polya
• Primarily symbolic calculation
• Symbolic and numerical calculation in one package
• Big calculator
• Applications: calculus, differential equations, numerical analysis
• free, alternative to commercial software such as Mathematica,
Maple, Matlab (primarily numeric). Similar software Sage.



What is symbolic calculation?

• unknown - no limitation, an open ended form of computation
• large numbers (representation)- both in integers and numerical
data
• exact forms e.g.

√
2

• embedding knowledge
• algebra manipulation, substitution
• matrices, lists and other data structures
• generalising processing functions to build and evaluate other
functions



Using Maxima

• a library call does not modify the original object but makes a
new one
• cheat sheet for obtuse syntax
- the syntax or way to do a particular task is often not easy to
remember
• there is no sane library - all large scale software has its issues



Infinite evaluation or colliding definitions

Maxima state can be become unstable/corrupted

• Maxima > Restart Maxima - runaway processing,
Maxima > Interrupt - often fails
• Depending on what you are doing, edit and re-define the
offending code/procedure



Programming data structures

• list []
• access elements with the array operator
• create a list makelist(f04(a), a, 1, 10)
• append makes a new list and adds to its end

• set {}



/* Convert */

s1: {2, 5, 9};

s2: listify(s1);

s2[2];

/* Add to end of a list */

t3: [3, 4, 7];

t3: append( t3, [-1]);



Functions and procedures

• last statement is the return value
• declare local variables at start in square brackets with commas
e.g. [y , z ]
• greatest debugging technique - print to the screen



f01(n) := block

(

[y],

y: 0,

while n > 1 do

(

y: y+n^3,

print(y),

n: n-1

),

y

);



Cannon ball example

The trajectory of a cannon ball

can01(a,b) := a*x^2+b*x;

plot2d( can01(-2,5), [x,0,6] );

find_root( can01(-2,5)=0,x,0,6 );

find_root( can01(-2,5)=0,x,1,6 );

diff( can01(-2,5),x);

solve(5-4*x=0,x);

http://wn.com/the_trajectory_of_a_cannonball,_a_real_life_application_of_parabolas


Solving f (xn) = 0

• equilibrium can be expressed as an equation of 0:

f = g then f − g = 0

• most problems can be transformed into solving for 0
e.g. define a metric or distance function with a solution at 0
• local vs global solution and strategy



Derivative

• ratio of two indefinite decreasing infinitesimals

f ′(x) =
dy

dx
dy → 0, dx → 0



Taylor series

• representing a function about a point x = a
• perfect information
• continuity - a piece of string
• algebraic and numerical real world are connected
• even processes without explicit functions can have these
numerically constructed



f (x) = f (a) + f ′(a)(x − a) + f (2)(a)
(x − a)2

2!
+ f (3)(a)

(x − a)3

3!
+ . . .

a = 0 : f (x) = f (0) + f ′(0)(x) + f (2)(0)
x2

2!
+ f (3)(0)

x3

3!
+ . . .

taylor(sin(x), x , 0, 6); x
x3

6
+

x5

120
+ . . .



Visual example of Taylor series

• use of a function to make this easier

tay(n) := taylor(sin(x),x,0,n);

plot2d( [tay(2), tay(4), tay(6), tay(8), tay(10), tay(12)], [x,-5,5] );



Derivation of Newton’s method

• Solve f (x) = 0

f (xn+1) = f (xn) + (xn+1 − xn)f ′(xn) +
(xn+1 − xn)2

2!
f (2)(xn) + . . .

(truncate)

f (xn+1) = f (xn) + (xn+1 − xn)f ′(xn)
(assume f (xn)→ 0 decreases)

0 = f (xn) + (xn+1 − xn)f ′(xn) (solve for xn+1)

0 =
f (xn)

f ′(xn)
+ xn+1 − xn

xn+1 = xn −
f (xn)

f ′(xn)



Newton’s method as a function

f (x) (f (x) = 0)

Df (x) (derivative)

newt(Df , f , x) = x − f (x)

Df (x)



Third order Newton method

• Newton’s method is a 2nd order approximation
• Arithmetic Newton (AN) method is 3rd order

zn = newt(Df , f , xn) (next better approximation)

Df2 =
1

2
(Df (zn) + Df (xn)) (better derivative approximation)

xn+1 = newt(Df2, xn)



• AN with explicit mathematics

zn = xn −
f (xn)

f ′(xn)

Dgn =
1

2
(f ′(zn) + f ′(xn))

xn+1 = xn −
f (xn)

Dgn



Osama Yusuf Ababneh, New Newton’s Method with
Third-order Convergence for Solving Nonlinear Equations


