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Lecture 1. Introduction and
Basic Notions of Logic

Most people will remember the scene from Monty Python’s ‘Holy Grail’ in
which Sir Bedevere explains to the people of his village how to tell whether
someone is a witch or not. Sir Bedeveres argument is hilariously irrational.
Put into a more tractable form than how it is originally presented, part of it
runs somewhat like this:

(1) Witches burn.
(2) Whatever is made of wood, burns.
(3) Therefore, witches are made of wood.

This is evidently a silly argument. Although it may well be true that what-
ever is made of wood burns, surely things made of other stuff also burn, say
paper. So witches need not be made of wood, if they burn: they could also
be made of paper. The conclusion does not follow from the premises: we
can accept the premises of the argument (1) and (2) without accepting its
conclusion (3).

Contrast Sir Bedevere’s argument with the following one:

(1) Every cat is a mammal.
(2) No mammal is a fish.
(3) Therefore, no cat is a fish.

This is a much better argument. In this argument the conclusion follows
from the premises: it cannot possibly be the case that both premises are
true, but the conclusion false!

In studying logic, we study what it is that arguments of the latter kind
have in common, and what distinguishes them from arguments of the kind
Sir Bedevere puts forward. We will work with a somewhat idealised notion
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Lecture 1 Introduction and Basic Notions of Logic

of an argument. For our purposes, the following definition will do:

DEFINITION. An argument is any set of declarative sentences, one of which
is designated as the conclusion of the argument, the others being its premises.

We can write down arguments as lists of sentence, where the last one is
separated by a line from the others, thereby distinguishing the premises from
the conclusion. In the examples above, I have also numbered premises and
conclusions, which helps referring to them in later discussion, but that is not
required by the definition.

Our somewhat idealised definition has the effect that for our purposes we
will call things ‘arguments’ which in ordinary life I suspect we wouldn’t be
easily convinced to class as such. For instance, the following is an argument:

(i) John likes a drink.
(ii) Therefore, Mary plays the piano.

Our definition of what an argument is ignores that in ordinary life we would
require premises and conclusions to be somehow connected with or relevant
to each other, not just random collections of sentences one of which is ar-
bitrarily designated as a conclusion and the others as premises. This will
have consequences in the development of logic that will probably strike you
as rather counterintuitive. You’ll see yourself what they are once we come
across them!

Our definition of an argument is deliberately broad. It may well be true
that some things we call arguments are not the kind of thing normally put
forward as arguments in ordinary life. But because our definition is so broad,
at least we are making sure that we do not exclude any arguments of the kind
that use declarative sentences as premises and conclusions.

Thus we exclude from being premises and conclusions sentences which
are not declarative, i.e. we are only dealing with sentences of the kind used
in the examples above, but not, for instance, with

‘Can I eat your dessert?’

or

‘Ouch!’
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Lecture 1 Introduction and Basic Notions of Logic

or

‘Don’t hit your little sister!’

or

‘Please go away.’

This excludes arguments (in the ordinary sense of that word), if there are
any, that involve commands, requests, questions or exclamations. There
might be examples involving commands or requests. Consider the following,
due to Arthur Prior:

(1) If God exists, go to church.
(2) Don’t go to Church!
(3) Therefore, God does not exist.

Should we assimilate it to the other examples of arguments discussed so far?
Prior’s example tries to establish a certain conclusion, and in that sense it is
similar to the other examples. However, it does so in a way which is rather
different from what goes on in the other examples: in the latter, the premises
are put forward as reporting facts, whereas here in the second premise we
find a command or a request to take up a certain course of action. This
points to a distinction which suffices to motivate excluding commands and
requests from being premises and conclusions of arguments.

Another reason for excluding requests, commands, questions, exclama-
tions etc. from being premises and conclusions of arguments is that restrict-
ing consideration to declarative sentence, we are considering only sentences
that can be said to be true or false. For brevity’s sake, from now on, when I
talk about sentences, I mean declarative sentences. We call ‘True’ and ‘False’
the truth-values of sentence and abbreviate them by T and F. We assume
that every sentence has either the truth-value T or the truth-value F, i.e. we
assume every declarative sentence to be either true or false.

We observed at the beginning a crucial difference between Sir Bedevere’s
argument and the second argument about cats and fish. The former had
premises which may very well be true, but a conclusion which may very well
be false. Contrary to that, the second argument was of a kind such that it
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could not possibly be the case that the premises are true and the conclusion
false: the conclusion followed from the premises. We use this observation to
define a notion characterising arguments of second kind:

DEFINITION. An argument is deductively valid if and only if it is not pos-
sible for the premises to be true and the conclusion false.

We can also say that valid arguments are truth-preserving : if the premises
of a valid argument are true, its conclusion must also be true. Arguments of
Sir Bedevere’s kind lack this property. Hence they are not deductively valid.
They are deductively invalid :

DEFINITION. An argument is deductively invalid if and only it is not de-
ductively valid.

It follows from the two definitions that an argument is deductively invalid if
and only if it is possible for the premises to be true and the conclusion false.

Arguments thus come in two kinds: the valid ones and the invalid ones.
The valid ones come in three kinds:

(i) True premises and a true conclusion, for instance:

(1) Every cat is a mammal.
(2) No mammal is a fish.
(3) No cat is a fish.

(ii) At least one false premise and a true conclusion, for instance:

(1) Every fish is human.
(2) Socrates is a fish.
(3) Socrates is human.

(iii) At least one false premise and a false conclusion, for instance:

(1) London is either in France or in England.
(2) London is not in England.
(3) London is in France.

Obviously there can’t be any valid arguments with true premises and a false
conclusion, as then the argument would be invalid.

Nils Kurbis: Introduction to Logic 6



Lecture 1 Introduction and Basic Notions of Logic

If an argument fails to convince us of the truth of its conclusion – as-
suming of course that we are not stubborn, or refuse to be rational, or can’t
follow the argument because it’s too complicated, or its too dull to be fol-
lowed – this may be because the argument is not valid, as was the case
with Sir Bedevere’s argument. But as the valid arguments come in the three
kinds, there is another option for when we need not accept the conclusion
of an argument: it might be that, although the argument is valid, one of
the premises is false. Arguments which are valid and have true premises are
particularly good. This is because if you accept the truth of its premises,
such an argument should lead you to accept its conclusion. We call these
arguments deductively sound :

DEFINITION. An argument is deductively sound if and only if it is deduc-
tively valid and its premises are true.

Hence argument (i) above is sound, whereas arguments (ii) and (iii) are un-
sound :

DEFINITION. An argument is deductively unsound if and only if it is not
deductively sound.

It follows from the definition that an argument is deductively unsound if and
only if it is either invalid or one of its premises is false, i.e. the unsound ones
are those we called unconvincing at the beginning of this paragraph.

Notice that whether or not an argument is convincing depends, to some
extend, at least, on who considers it. Whether or not an argument is unsound,
by contrast, has no such subjective aspect: it is sound or unsound, no matter
what you think about the argument. We might say that with our definition
of unsoundness we have captured the objective core of our intuitions about
unconvincing arguments.
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I have mentioned in the last lecture that our very wide definition of what
we count as an argument for the purposes of logic – i.e. an argument is
any set of declarative sentences one of which is designated as the conclusion
of the argument, the others being its premises – has some counter-intuitive
consequences. One such consequence is that, e.g.

(i) John likes a drink.
(ii) Therefore, Mary plays the piano.

is an argument according to our definition. But at least by our definition of
validity, it is a bad argument, because it’s invalid: it can have a true premise
and a false conclusion. Later in this lecture we will encounter arguments
which may appear rather random to intuition, but which our definition of
validity will determine as good, valid arguments.

But first let’s have a quick look at a certain kind of argument that is very
often used in science and also in everyday life. Although these very often are
good arguments in the sense that they convince people of their conclusions
on the basis of their premises, we will not attempt to characterise in any de-
tail what it is that makes these arguments good ones. Take, for instance, the
following example. During an outbreak of cholera in Soho in 1854, the physi-
cian John Snow observed that people who contracted the disease had drunk
water from a public water pump in Broadstreet. He concluded that the well
was the source of the epidemic. His argument, thus, went somewhat like this:

Many people drunk water from the well and contracted cholera.
Therefore, the well is the source of the cholera outbreak.

This was as very good argument, so good indeed that the local authorities
found it convincing enough to have the pump handle removed to prevent
people from getting water from the well. But the conclusion doesn’t follow
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from the premise with the kind of logical necessity that is characteristic of
our definition of a valid argument: it could have been the case that all these
people contracted cholera somehow else else and only by chance had they
all drunk water from the well. Nonetheless, the conclusion that the well was
contaminated is strongly supported by the premise. We can say that although
the argument is not deductively valid, it is inductively strong. In this course,
we are not going to study inductive arguments. We only concentrate on
deductive arguments.1

Before continuing with the more counterintuitive consequences of our def-
initions of ‘argument’ and ‘validity’, we need some more terminology. Con-
sider the following sentences:

(i) Alice is in Paris or in Rome.
(ii) Alice is not in Paris.
(iii) Alice is not in Rome.

Notice that we are now not considering an argument: none of the three
sentences is singled out as the conclusion. We simply consider the three
sentence as a collection. Such a collection is called a set : we do not care
about the order or the number of times a item occurs in the collection; the
numbering is merely added to facilitate referring to each sentence in the next
paragraph.

There is something quite special about this set of sentences: they cannot
possibly be all true together. For suppose (i) and (ii) are both true—then
(iii) cannot possibly be also true; suppose (ii) and (iii) are both true—then (i)
cannot possibly be true; suppose (i) and (iii) are both true; then (ii) cannot
possibly be true!

Logicians have found such collections of sentences so interesting that they
gave them a name: a set of sentence such that it is not possible for all its
members to be true is called an inconsistent set. One of the reasons why
these sets are quite important is that they are closely connected to the notion
of validity. Take an inconsistent set. Its members cannot all be true together.
Now take away some one sentence from the set. If the rest of the sentences in
the set are all true, this sentence we have taken away must be false. In other
words, the falsity of this sentence follows from the truth of all the others,

1The distinction is, I presume, the reason why Bergmann et al. chose the rather clumsy
phrase ‘deductively valid’ instead of simply ‘valid’: the point is to remind us that there
are very good arguments which we exclude from consideration, i.e. inductive ones.

Nils Kurbis: Introduction to Logic 9



Lecture 2 More Basic Notions

i.e. denying the truth of the sentence and using this as the conclusion of an
argument which has the other sentences in the set as premises produces a
valid argument.

It goes without saying that not all sets of sentences are inconsistent. If
a set is not inconsistent, then its members can all be true together. The
‘opposite’ of inconsistency is consistency:

DEFINITION. A set of sentences is logically consistent if and only it is pos-
sible for all the members of that set to be true.

We can now define inconsistency as that which is not consistent:

DEFINITION. A set of sentences is logically inconsistent if and only it is not
consistent.

Notice that consistency and inconsistency are properties of sets of sentences,
not of sentences.

We now have material at hand to discuss the first counterintuitive conse-
quence of our definitions of ‘argument’ and ‘validity’. Take a set of sentences
that is inconsistent. By definition, the sentences in it cannot possibly be
all true together. But now suppose we take an inconsistent set of sentences
as the premises of an argument and chose an arbitrary new sentence as the
conclusion of the argument. By definition, an argument is deductively valid
if and only if it is not possible for the premises to be true and the conclusion
false. But if the premises cannot all be true, as the set is inconsistent, this
means that an argument the premises of which are inconsistent is already
valid, no matter what has been chosen as the conclusion. This is irrelevant,
because whatever the conclusion, it can never be the case that the premises
of the argument are all true and the conclusion false, simply because the
premises cannot be all true in the first place! Thus the following, for in-
stance, is a valid argument:

(i) Alice is in Paris or in Rome.
(ii) Alice is not in Paris.
(iii) Alice is not in Rome.
(iv) Therefore, moon is made of cheese.

If that sounds very counterintuitive, it maybe a consolation to notice that at
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least the argument cannot be sound, because its premises cannot be all true.
In other words, there is no way of establishing the conclusion on the basis of
the premises. So maybe the fact that this is a valid argument is not so bad.

As mentioned, inconsistency is a property of sets of sentences, not of sen-
tences. (A set could of course consist of only one sentence, but in general
people take a set of one sentence to be different from the sentence itself and
in any case it is useful to make this distinction here.) There is, however, a
notion that applies to sentences, but not sets of sentences, which is closely
connected to inconsistency. Consider the following sentence:

It is raining and it is not raining.

This sentence cannot possibly be true. The weather sometimes is pretty bad,
but it is never so bad that it is both, raining and not raining. We say that
this sentence is logically false:

DEFINITION. A sentence is logically false if and only it is not possible for
the sentence to be true.

So just as an inconsistent set of sentences is one the members of which cannot
possibly be all true together, a logically false sentence is a sentence taken on
its own which cannot possibly be true. Of course, a set consisting only of a
single logically false sentence is logically inconsistent, as its members (this
one logically false sentence) cannot possibly all be true, and conversely, a
logically inconsistent set consisting of only one sentence has as its member a
logically false sentence.

Now consider this sentence:

It is raining or it is not raining.

This sentence cannot possibly be false. Whatever the weather is like, it is
always either raining or not raining. We call such sentences logically true:

DEFINITION. A sentence is logically true if and only if it is not possible for
the sentence to be false.

Notice that there is no term for sets of sentences that stand in a relation
to logically true sentences analogous to the one in which inconsistent sets of
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sentences stand to logically false sentences.
Not all sentences are either logically true or logically false. There is a

third option. There are sentences which are neither logically true nor logi-
cally false, for instance ‘It is not raining’. These sentences are called logically
indeterminate:

DEFINITION. A sentence is logically indeterminate if and only it is neither
logically true nor logically false.

Again, there is no terminology to characterise sets which corresponds to the
logical indeterminacy of sentences.

We can now discuss another counterintuitive consequence of our defi-
nitions of ‘argument’ and ‘validity’. Consider any logically true sentence.
Suppose you use it as the conclusion of an argument and take some arbitrary
sentences as its premises. This argument is valid according to our definition!
This is so because, as the conclusion is true anyway, it cannot possibly be
the case that the premises are true and the conclusion false! So, for instance,
this is a valid argument:

(1) Alice is in Paris, in Rome or in Madrid.
(2) Alice is in Madrid.
(3) Alice is not in Rome.
(4) Therefore, it is raining or it is not raining.

If Alice is indeed in Madrid, this argument will even be sound. Contrary
to the counterintuitive argument with the premises forming an inconsistent
set, this time the terminology we have at hand does not allow us to say
anything negative about the argument. We just have to live with the fact
that it is valid and possibly sound, even though intuitively it looks like a
pretty bad argument! Notice however that valid arguments, we said, are
truth preserving : if the premises are true, so is the conclusion, and even if
this kind of argument sounds somewhat strange, at least it has this property:
it will never lead us astray: it’ll never lead from true premises to a false
conclusion.

There is one last definition we need to mention today. Consider the fol-
lowing pairs of sentences:

(1.1) John loves Mary.
(1.2) Mary is loved by John.
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(2.1) Sometimes it is not raining.
(2.2) It is not raining all the time.

(3.1) London is to the north of Edinburgh.
(3.2) Edinburgh is to the south of London.

The sentences of each pair say the same thing. As you may have noticed by
now, our definitions do not actually care an awful lot about what has been
said by a sentence, or what they mean, or what they express. In logic, all
we really care about is whether sentences are true or false, i.e. all we care
about are the truth-values of sentences, or rather, not even that is the main
concern, what truth-values sentences in fact have, but only what truth-values
they could have. ‘To say the same thing’ therefore isn’t a notion congenial to
the way we are doing logic here, but we can capture some of this notion by
noticing that, if two sentences ‘say the same thing’, then at least they never
have different truth-values. Thus for our purposes all we need to care about
‘saying the same thing’ is captured by the following definition:

DEFINITION. The members of a pair of sentences are logically equivalent if
and only it is not possible for one of the sentences to be true while the other
sentence is false.

This is the last definition for this lecture.
To recapitulate, we defined notions relating to sentences, to pairs of sen-

tences, to sets of sentences and to arguments. Make sure you keep these
apart. When reading or using terminology, ask yourself what it applies to.
The notions of logical truth, logical falsity and logical indeterminacy relate to
sentences ; the notion of logical equivalence relates to pairs of sentences ; the
notions of consistency and inconsistency relate to sets of sentences ; the no-
tions of validity, invalidity, soundness and unsoundness relate to arguments.

Getting acquainted with this terminology is a good exercise for using
philosophical terminology in general correctly. Many essays in my experience
suffer from incorrect use of terminology and thus are strictly speaking full
of category mistakes—in other words false or even nonsensical claims. For
instance, sentence are not valid. Only arguments are. There may of course
be some intelligible way of speaking on which sentences may be called valid,
but that is not the way of speaking that we have decided to follow with our
definition. Similarly, arguments are not logically false. Only sentences are.
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Again, sentences are not inconsistent. Only sets of sentences are.
The definitions we have given refer to some notion of possibility, e.g. it

is not possible for the sentence to be true, or it is not possible for all the
sentences in a set to be true together, or it is not possible for the premises
to be true and the conclusion false. You might now ask yourself: how do we
determine whether something like that is or is not possible? Consider the
following argument:

(1) Every beautiful person is a girl.
(2) No boy is a beautiful person.
(3) No boy is a girl.

This argument has true premises and a true conclusion. But is it valid? It
seems to be the case that it is not possible for the premises to be true and the
conclusion to be false—indeed, the conclusion, it seems, could not possibly
be false!

The reason why we are inclined to say that (3) cannot possibly be false
is that ‘boy’ and ‘girl’ have a certain meaning. I have already mentioned
that logic as we are studying it in this course in general abstracts from the
meanings of sentences or from what has been said. The reason for this is
that content is always something connected to particular sentences. But in
logic we are not primarily interested in particular cases of arguments; we
are interested in what different arguments have in common, what in general
makes arguments good or bad. Specific examples matter only in as far as
they exemplify a general case. Our definitions aim at generality. We are not
concerned with particular arguments, but rather with the general forms of
arguments. We are not interested in talking about anything in particular,
say boys and girls, but rather we are interested in whatever form arguments
about whatever can have. Logic, it is sometimes said, has no particular
subject matter, or maybe better, it has all possible subject matters as its
subject matter.

When we use a notion of possibility in the definitions, we should keep in
mind the aim with which the definitions are put forward, i.e. generalisation.
So we won’t be satisfied with calling the above argument valid. But we must
have some criteria for when something is possible according to our logic and
when it is not. The way to achieve this is to eliminate those features of the
argument which determine its subject matter, i.e. boys, girls and beautiful
people. So rather than having specific predicates like ‘boy’, ‘girl’ and ‘beau-
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tiful person’ in our argument, we could replace them by placeholders A, B
and C:

(1) Every A is a B.
(2) No C is an A.
(3) No C is a B.

Now we are not talking about anything in particular anymore. We are only
considering the form of the argument, not its content. This puts us in a posi-
tion to recognise that arguments of this form are not all valid. For instance,
replace A with ‘bird’, B with ‘animal’, C with ‘dog’:

(1) Every bird is an animal.
(2) No dog is a bird.
(3) No dog is an animal.

This argument has the same form as the boy-girl argument, but it has true
premises and a false conclusion, hence is not valid. And so, because we are
interested in the general case rather than the particular one, we put the for-
mer in the same category as the latter and call it invalid too. Contrast this
case with the following form arguments can take:

(1) Every A is a B.
(2) No C is a B.
(3) No C is a A.

No matter what you put for A, B and C, the argument is going to be valid.
No argument of this form can be such that the premises are true and the
conclusion false!

The method for determining whether something is possible or not ac-
cording to our definitions in a way that takes into account the generality we
aim at is formalisation: we replace those parts of sentences that determine
a certain subject matter by place-holders or variables that stand for nothing
in particular. In a way they stand for everything we can talk about: we can
replace anything we like for A, B and C (within the bounds of grammar, of
course). Formalisation isolates the general forms of arguments. It is often
said that logical inferences are valid by their form and logic is said to be a
formal science. We are doing formal logic.

We have seen that the definitions we have given so far have a drawback:
because they refer to an intuitive notion of possibility, they are not quite
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suitable for the generality we require. We made this notion of possibility more
suitable by explaining it in terms of formalisation. In fact, we will redefine
the notions defined in terms of possibility in terms more suited to the project
of formal logic, once we have introduced the methods of formalisation, which
is the topic of the next lectures.
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Lecture 3. Formalisation:
Conjunction, Disjunction,
Negation

At the end of the last lecture I explained how formalisation allows us to
explicate the intuitive notion of possibility used in the definitions introduced
so far. The objective is to abstract from content as far as possible and
to isolate the form of arguments. We wish our notion of validity to be
understood in such a way that all arguments of a certain form are valid,
i.e. truth-preserving. In this lecture we will start introducing methods of
formalisation. This involves introducing the use of symbols. Formalisation
is to a certain extend a means of saving ink: using symbols enables us to
express things in a shorter way than if sentences of ordinary English were
used. Everything we say using symbols could be said using ordinary English,
possibly at the cost of some prolixity. But in the second part of these lectures
the latest you will realise that symbols are actually to some extend clearer
than ordinary English, at least once you’re used to them. Symbols help
making distinctions that in ordinary language aren’t easily available, and if
made are clumsy and often quite hard to comprehend. Comparing discussions
in modern logic books with ancient or mediaeval ones suffices to prove this
point ... This is not to say that the meanings of sentences expressed using
symbols are always immediate. Sometimes we need to do some thinking and
reflect on the sentence to grasp it. But there is never any doubt what truth-
value a sentence expressed in the formal language has, and we will introduce
methods for determining truth-values in precise ways which always lead to a
unique result. There are no ambiguities in the formal language.

Thus formalisation has three points: a) to provide a shorthand for sen-
tence in ordinary language, b) more specifically a shorthand which is unam-
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biguous, and c) a shorthand that exhibits the general forms of sentences and
arguments.

In case you were wondering whether there is a difference between ‘formal’
and ‘symbolic’, I’ll use these terms interchangeably. ‘Formal’, ‘formalisation’
and ‘formal language’ seems to have some more currency in contemporary
literature, whereas ‘symbolic’, ‘symbolisation’ and ‘symbolic language’ seem
to be more often used in older texts. But both are equally good ways of
speaking. The first alternative seems to stress that in logic we are not in-
terested in saying anything in particular: we focus on the form sentences
that say something can have, not on their content. The second alternative
seems to stress that nonetheless the point of using symbols is that they stand
for or represent expressions having a certain content and can be used to say
something.

In this and the next lectures, we will set up a formal language which
serves the purposes isolated above. But before we introduce the first symbols
of our formal language, we need to apply the motto of logicians divide et
impera – divide and conquer! – and make some distinctions which allow us
to exclude certain expressions of natural language from consideration in the
formal language. Formalisation will proceed in two stages. At the first stage,
we provide a symbol for an expression of ordinary English only if it is of
such a kind that it turns sentences into sentences. We call these expressions
sentential connectives. For instance, ‘and’ is such an expression. It forms,
e.g., the compound sentence ‘Mary is playing the piano and John goes to the
pub’ from the two simple ones ‘John goes to the pub’ and ‘Mary is playing
the piano’. ‘It is not the case that’, ‘or’ and ‘if-then’ have similar properties.
This is to be understood as excluding ‘Some’ and ‘All’, because these are
best understood as occurring in the context ‘Some A are B’ or ‘All A are
B’, and thus form sentences from two predicates. Of course you might say
that ‘All’, e.g., forms a sentence from a sentence, for instance ‘All men are
mortal’ from ‘Men are mortal’. But notice that ‘Men are mortal’ means
the same as ‘All men are mortal’, but (*) ‘All all men are mortal’ doesn’t
mean the same as ‘All men are mortal’ but is, in fact, meaningless. Thus
‘all’ cannot just form sentences from sentences: To exclude (*) from being
a legitimate construction, the structure of the sentence would have to be
taken into account. The sentence that is used to form another sentence by
appending ‘all’ must have a rather specific form, namely ‘A are B’. Thus
if ‘all’ and ‘some’ were connectives that form sentences from sentences, we
have to take into account the subsentential structure of the sentences. Thus
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it is natural to say right from the start that ‘all’ and ‘some’ really should be
treated as ‘all ... are ...’ and ‘some ... are ... ’, which are expressions forming
sentences from two predicates.

Thus at the first stage of formalisation, we consider only expressions which
form sentences from sentences, no matter what their substructure. Excluding
‘some’ and ‘all’ from symbolisation might come as a bit of a surprise, because
this excludes us from formalising the syllogisms used as examples in the last
lectures. But as mentioned, formalisation has two stages. ‘Some’ and ‘all’
come at the second stage. At the first stage, we only introduce the language
and symbols of sentential logic, where we only consider whole sentences and
sentences formed from them, but not subsentential structures. At the second
stage, we take into account the structure of expression and subsentential parts
of sentence, in particular those parts for which A and B stand in syllogisms,
i.e. predicates. The second stage of formalisation is thus called predicate
logic.

We haven’t yet excluded enough to proceed to formalisation. You’ll re-
member that we have introduced the two truth-values T and F, although we
have not made much explicit use of them yet. We will use them at almost
every step from now on, and in particular to provide a definition of what
kinds of expressions are symbolised in the formal language we are about to
construct. Contrast the following two sentences:

(i) John believes that the earth is flat.
(ii) It is not the case that the earth is flat.

Both sentences contain the sub-sentence ‘the earth is flat’: we can view both
sentences as being constructed from this sentence by writing ‘John believes
that’ and ‘It is not the case that’, resp., in front of it. There is a significant
difference between these two examples. We know that ‘the earth is flat’ is
false. This allows us to conclude that ‘It is not the case that the earth is flat.’
is true. But it does not allow us to conclude anything about the truth-value
of ‘John believes that the earth is flat.’. The formal language will only have
symbols for the former kind of expression. We call them the truth-functional
connectives:

DEFINITION. A sentential connective is used truth-functionally if and only
if it is used to generate a compound sentence from one or more sentences
in such a way that the truth-value of the generated compound is wholly de-
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termined by the truth-values of those one or more sentences from which the
compound is generated, no matter what those truth-values may be.

This definition will become a lot clearer when we’ve given examples of the
kind of connectives that are truth-functional and are graced with symbols
in the language of sentential logic. So let’s introduce the first one, which is
conjunction.

By conjunction, we’ll mean the word ‘and’. Instead of using the English
word, we will represent it by the symbol &. And instead of writing actual
sentences to its left and right, we write capital letters like, A, B, C. We
stipulate which ordinary language sentences are supposed to be represented
by these capital letters. E.g., we stipulate that ‘John goes to the pub.’ is
represented or, indeed, abbreviated by simply writing J and ‘Mary is playing
the piano.’ is abbreviated by M . We can draw up a table where we record
which sentence is abbreviated by which capital letter:

Letter: Sentence it abbreviates:
M Mary is playing the piano.
J John goes to the pub.

A table like this one provides what is called an interpretation of the formal
language: M and J by themselves of course mean nothing – they are not
sentences of English (nor, indeed, any other language, I presume), they are
merely letters – but we can of course stipulate that for the moment they are
to stand for sentences of English that say something. We can now represent
the sentence

Mary is playing the piano and John goes to the pub.

by the following sentence of the language of sentential logic:

M&J

Suppose we extend our interpretation of capital letters of the language of
sentential logic by adding the two following rows to the table:
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Letter: Sentence it abbreviates:
M Mary is playing the piano.
J John goes to the pub.
K Kate is a brunette.
L Luke prefers blondes.

We can now symbolise

Kate is a brunette and Luke prefers blondes.

by the following sentence of the symbolic language:

K&L

These admittedly trivial examples illustrate how symbolisation exhibits the
common form of sentences. The two sentences ‘Mary is playing the piano
and John goes to the pub.’ and ‘Kate is a brunette and Luke prefers blon-
des.’ have a common structure, namely being constructed from two simpler
sentences by means of conjunction. Here is a slightly more exciting exam-
ple. Consider the following extension of the interpretation of the symbolic
language:

Letter: Sentence it abbreviates:
M Mary is playing the piano.
J John goes to the pub.
K Kate is a brunette.
L Luke prefers blondes.
N Nancy is playing the piano.

We can now symbolise this sentence:

Mary and Nancy are playing the piano.

by the following sentence of the symbolic language:

M&N

It is less obvious that ‘Mary and Nancy are playing the piano.’ shares a
common structure with ‘Mary is playing the piano and John goes to the pub.’
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and ‘Kate is a brunette and Luke prefers blondes.’ than it is that the latter
two share this structure. Nonetheless, nothing spectacular or unforeseen has
happened yet.

Conjunction is often expressed by other phrases in ordinary English, e.g.
by ‘although’, ‘but’, ‘however’. We also symbolise all these phrases by &. So,
for instance, ‘Kate is a brunette, but Luke prefers blondes.’ is symbolised as
K&L, ‘Although Mary is playing the piano, John goes to the pub.’ as M&J ,
etc.. Here we have some more telling cases of common structure: whatever it
is that ‘although’ or ‘but’ or ‘however’ express that distinguishes their use in
ordinary English from that of ‘and’ is nothing that need concern us for the
purposes of logic. Whatever this difference, whether you use ‘and’ or ‘but’
makes no difference to the truth of what you have said: the truth-values of
‘Although Mary is playing the piano, John goes to the pub.’ is the same as
the truth-value of ‘Mary is playing the piano and John goes to the pub.’.
Although it may sometimes be more appropriate to use one rather than the
other, and your utterance could be criticised for inappropriateness, it is quite
plausible to assume that you wouldn’t be criticised for having said something
wrong.

In the last paragraph, we talked about the structure of sentences. Very
abstractly speaking, the structure of the example sentences is the following:
first comes a sentence, then the symbol & and then another sentence. When
we talk about the structure of sentences, rather than using sentences to say
things, we use boldface letters P, Q, R instead of normal faced ones. So
we can now say that M&N , K&L and M&J have the common structure
P&Q. We call sentences of this structure conjunctions and P and Q are
their conjuncts. Notice that M&N , K&L and M&J say something, namely
what is given by their interpretation, but P&Q says nothing, as it is not a
sentence, but only the general form of a number of sentences.

There is something more interesting about the common form that these
sentences have than just the fact that they have it. What we are in the
process of doing is to construct a formal or symbolic language in which we
can abbreviate or represent sentences of ordinary English. Thus we need
to say something about how the new expressions are to be used, or what
their meanings are. As we are in the process of constructing the language
of sentential logic, we won’t say anything about the meanings of capital let-
ters, except what is said by their interpretation; we are not concerned with
subsentential structures. You’ll remember that we decided that only truth-
functional sentential connectives may be in the language of sentential logic.
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The point here was that if a truth-functional connective is used to construct
a compound sentence from simpler ones, then the truth-value of the com-
pound sentence is determined completely by the truth-value of the simpler
sentences. In other words, given the truth-values of the simple sentences, we
should be able to calculate the truth-value of the compound sentence. How
this is to be done is reasonably simple in the case of conjunction. Suppose
both simple sentences left and right of & have the truth-value T. Then the
conjunction of both should have the same truth-value: if L and M are true,
so is L&M . On the other hand, you won’t say something true if you assert
L&M , but L is false. Similarly if M is false. So if either or both of the two
simple sentences has the truth-value F, L&M should also have the truth-
value F. We can summarise this reasoning in the following table:

P Q P & Q
T T T
T F F
F T F
F F F

Such a table is called a truth-table: it specifies the truth-value of compound
sentences on the basis of the truth-value of its parts. Notice that it takes
into account all possible combinations of the two truth-values T and F. So
whatever happens we have specified the truth-value of a sentence of the form
P&Q on the basis of the truth-values of its conjuncts. So whenever we are
given a sentence in the symbolic language, e.g. L&M , we know how to
calculate its truth-value on the basis of the truth-values of L and M .

So far we cannot yet say very exciting things in our language. We need
some more connectives. When introducing the notion of truth-functional
sentential connectives, I mentioned as an example of such a beast the con-
nective ‘It is not the case that’. We represent this phrase by ∼. It stretches
intuition a little to call this expression a ‘connective’ as it doesn’t connect
anything. But it forms sentences from sentences, and that was our definition
of what a ‘connective’ is, so we should not be led astray by intuitions; what
matters is the definition we have given. The example I gave was:

It is not the case that the earth is flat.

If we abbreviate ‘The earth is flat.’ by E, we can symbolise this sentence by
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∼ E

We call the symbol ∼ negation and ∼ E the negation of E.
In ordinary English, negation is often expressed by phrases rather differ-

ent from ‘It is not the case that’. More often we simply use ‘not’, as in ‘Mary
is not a brunette.’ or ‘John does not go to the pub.’. Furthermore, negation
is often attached to predicates rather than sentences and expressed by pre-
fixes like ‘un-’, ‘non-’, ‘im-’ and ‘in-’. For instance, to deny that Aristotle was
married, we could use the sentence ‘Aristotle was unmarried.’, to deny that
something is plausible, we say that it is implausible. This observation allows
us to say some more interesting things about structure than was the case
with conjunction. ‘Aristotle is unmarried.’, ‘Logic is indispensable.’, ‘Orange
juice is non-alcoholic.’, ‘It is not the case that the earth is flat.’ all have
the same structure. Using the device of boldface letters, we can write this
common structure as ∼ P. The next table gives an interpretation of capital
letters of the formal language using ordinary English sentences, which we can
then translate using negation:

Letter: Sentence it abbreviates:
E The earth is flat.
M Mary is playing the piano.
A Aristotle is married.
D Logic is dispensable.
O Orange juice is alcoholic.

Using ∼, these are translated as the following:

English Symbols
It is not the case that the earth is flat. ∼ E
Mary is not playing the piano. ∼ M
Aristotle is unmarried. ∼ A
Logic is indispensible. ∼ L
Orange juice is non-alcoholic. ∼ O

Thus although in ordinary English we use different phrases to express nega-
tion, in the symbolic language the examples all turn out to be of the same
form.

If a sentence has the truth-value T, i.e. it is true, then its negation should
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have truth-value F, i.e. it is false. Conversely, if a sentence has the truth-
value F, i.e. it is false, then its negation has the truth-value T, i.e. it is true.
This gives the following truth-table for negation:

P ∼ P
T F
F T

It might be worth noting here that in principle we need not add any other
sentential connective to the language of sentential logic. Anything that can
be expressed at all by using truth-functional sentential connectives can be
expressed by using only conjunction and negation. But it makes things a
little easier to introduce more symbols into the language!

We can now symbolise some more complex sentences. Using the interpre-
tation given earlier, here are some examples:

Ordinary English Symbols
Kate is a brunette and Luke does not prefer K& ∼ L

blondes.
Neither Nancy nor Mary are playing the piano. ∼ N& ∼ M
Although Mary is playing the piano, John does not M& ∼ J

go to the pub.
Nancy and Mary are not both playing the piano. ∼ (N&M)

Notice the use of parentheses in the third example: the negation applies to
the conjunction of N and M : we use parentheses to ‘separate’ the different
parts of the sentence. If someone asserts that Nancy and Mary are not both
playing the piano, then he asserts that one of N and M is false, i.e. they are
not both true, which is to say that the conjunction of N and M is false, i.e.
the negation of the conjunction is true. The use of parentheses should not
present any difficulties for the moment. We will describe it precisely in the
next but one lecture.

The last thing to do for this lecture is to introduce one further connective,
which allows us to formalise a sentence like

Mary is not playing the piano or John goes to the pub.

We use this symbol to symbolise ‘or’: ∨. So, using once more the interpre-
tation provided earlier, the sentence is formalised as:

Nils Kurbis: Introduction to Logic 25



Lecture 3 Formalisation: &, ∨, ∼

∼ M ∨ J

We call a sentence of the form P∨Q a disjunction and P and Q its disjuncts.
We have to give a truth-table for disjunction. In the two cases we have dis-
cussed so far, the truth-tables were hardly controversial and unexciting. We
now face the problem that ‘or’ in ordinary language is used ambiguously.
When you go to a conference, you often get a choice between tea or coffee
to go with your breakfast. ‘Or’ here is meant to exclude the option that
you take both. We call this use of ‘or’ the exclusive use. But there is also
another use. Suppose a friend tells you on Thursday that he intends to go
to the cinema or to go to the Opera on Friday. If, on Saturday, he tells you
that he’s actually managed to do both, he hasn’t said anything incorrect on
Thursday. This use of ‘or’ is called the inclusive use. When we use ∨, we use
it in the inclusive sense. We want the example of John and Mary to work in
such a way that, given the disjunction is true, if Mary is playing the piano,
John goes to the pub. However, if the disjunction is true, we include the case
where John goes to the pub independently of what Mary is doing. The only
case where the disjunction is false, then, is the case where John is not in the
pub, even though Mary is playing the piano. These considerations give the
following truth-table for disjunction:

P Q P ∨ Q
T T T
T F T
F T T
F F F

The truth-table for ∨ eliminates all ambiguities that are present in ordinary
English ‘or’. But notice that of course all these ambiguities can be avoided
in ordinary English at the cost of more words: e.g. the inclusive use is often
expressed by using ‘and/or’, the exclusive sense could be expressed by using
‘Either A or B, but not both’. The exclusive sense of ‘or’ can be expressed
in the formal language by using negation, conjunction and disjunction. You
can try to find out how to do this, if you like.

Here are some examples of ordinary English sentences symbolised using
∨ and ∼:
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Ordinary English Symbols
Mary or Nancy is playing the piano. M ∨N
Kate is not a brunette or Luke does not prefer blondes. ∼ K∨ ∼ L
Mary and Nancy are not both playing the piano. ∼ M∨ ∼ N
Neither Nancy nor Mary is playing the piano. ∼ (N ∨M)

Notice that we also formalised the last two sentences using conjunction and
negation. We have two options for translating these sentences into the formal
language. We can check that both both symbolisations ‘say the same thing’
in our sense of the word, i.e. they are logically equivalent as defined in the
last lecture, by constructing a complex truth-table for each expression. We
can construct complex truth-tables in stages. Take, for instance, ∼ P& ∼ Q
First, we write down the different combinations of Ts and Fs that can be
the truth-values of P and Q. Then, using the truth-table for negation, we
calculate the truth-tables for ∼ P and ∼ Q, and finally we apply the truth-
table for conjunction to calculate the truth-table for ∼ P& ∼ Q:

P Q ∼ P ∼ Q ∼ P& ∼ Q
T T F F F
T F F T F
F T T F F
F F T T T

Let’s also calculate the truth-table for ∼ (P ∨ Q). Here we first calculate
the truth-table for (P ∨Q) by applying the truth-table for disjunction, and
then the truth-table for ∼ (P∨Q) by applying the truth-table for negation:

P Q P ∨Q ∼ (P ∨Q)
T T T F
T F T F
F T T F
F F F T

Both truth-tables have the same last row, the same combination of Ts and
Fs. This means that any sentence of the forms ∼ P& ∼ Q and ∼ (P ∨Q)
have the same truth-value under any conditions. Thus they are logically
equivalent and ‘mean the same thing’ for the purposes of logic. The same
holds for sentences of the forms ∼ P∨ ∼ Q and ∼ (P&Q), as you can check
as a homework.
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Material Implication,
Biconditional

Last lecture we introduced the first symbols of our formal language: con-
junction &, negation ∼ and disjunction ∨. The use of each of these symbols
is characterised by a truth-table, which specifies under which conditions sen-
tences of the form P&Q, P∨Q and ∼ P are true or false. Truth-tables give
a method for calculating the truth-values of compound sentences on the basis
of the truth-values of the simple sentences they are built up from. In cal-
culating compound sentences with more than one sentential connective, we
often have to use parentheses to indicate the order in which the calculation
is done. For instance, there is a difference in meaning between the following
two sentences:

(i) Either Kate is not a brunette or John does not prefer blondes.
(ii) It is not the case that either Kate is a brunette or John does not

prefer blondes.

In the first example, we only say something false in case Kate is a brunette
and John prefers blondes. In the second example, we deny that a disjunction
is true, i.e. we deny that at least one of the disjuncts is true, which is to say
we assert that both disjuncts are false: we only say something true in case
Kate is not a brunette and John prefers blondes. That’s a rather important
difference.

This difference is reflected in the formal language by the use of paren-
theses. The way parentheses are placed to structure sentences of the for-
mal language pretty much mirrors the grammatical structure of the English
sentences: the first sentence starts with ‘either’ followed by two clauses con-
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nected by ‘or’ in each of which a negation occurs; the second sentence starts
with ‘It is not the case that’, which is followed by two clauses connected by
‘or’ in one of which a negation occurs. Using the interpretation of the last
lecture, the two sentences are symbolised in the following way:

(i’) ∼ K∨ ∼ J
(ii’) ∼ (K∨ ∼ J)

Notice how the structure of the symbolic sentences mirrors the structure of
the English sentences.

That both sentences of the formal language must have a different mean-
ing can be seen by constructing their truth-tables. The construction of each
truth-table proceeds differently. In the first case, we first calculate the truth-
tables of ∼ J and ∼ K by applying the truth-table for negation to the simple
sentences J and K, and then we calculate the disjunction ∼ K∨ ∼ J by ap-
plying the truth-table for disjunction to ∼ J and ∼ K:

K J ∼ K ∼ J ∼ K∨ ∼ J
T T F F F
T F F T T
F T T F T
F F T T T

The calculation of the truth-table for the second sentence proceeds differ-
ently: first we calculate the truth-table of ∼ J by applying the truth-table
for negation to the simple sentence J , then we calculate the disjunction
K∨ ∼ J by applying the truth-table for disjunction to K and ∼ J , and last
we calculate the truth-table of ∼ (K∨ ∼ J) by applying the truth-table for
negation to K∨ ∼ J :

K J ∼ J K∨ ∼ J ∼ (K∨ ∼ J)
T T F T F
T F T T F
F T F F T
F F T T F

Observe that the two truth-tables have a different combination of Ts and Fs
in their last row. That means that ∼ K∨ ∼ J and ∼ (K∨ ∼ J) are true
and false under different conditions: for instance, if Kate is not a brunette
and John does not prefer blondes (which is the case covered by the last line
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of each truth-table), ∼ K∨ ∼ J is true and ∼ (K∨ ∼ J) is false. Thus both
sentences cannot say the same thing: they have different meanings and are
not logically equivalent.

Notice incidentally that dropping ‘either’ from (ii) to form

(iii) It is not the case that Kate is a brunette or John does not prefer
blondes.

gives a sentence which is ambiguous and can mean either (i) or (ii). No such
ambiguity exists in the sentences of the formal language.

At the end of the last lecture we also discussed an example of two different
sentences in the formal language which do say the same thing (in the sense
explained). There are two ways of formalising the sentence

Neither Mary nor Nancy is playing the piano.

The two options are:

(i) ∼ M& ∼ N
(ii) ∼ (M ∨N)

Both sentences of the formal language say the same thing as they have the
same truth-table. This is the truth-table for ∼ M& ∼ N :

M N ∼ M ∼ N ∼ M& ∼ N
T T F F F
T F F T F
F T T F F
F F T T T

And this is the truth-table for ∼ (M ∨N):

M N M ∨N ∼ (M ∨N)
T T T F
T F T F
F T T F
F F F T

Notice that here we have calculated the truth-tables for the meaningful sen-
tences ∼ M& ∼ N and ∼ (M ∨ N) which, given our interpretation of N
and M as ‘Nancy is playing the piano.’ and ‘Mary is playing the piano.’,
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both formalise the English sentence ‘Neither Mary nor Nancy is playing the
piano.’. At the end of the last lecture, we calculated truth-tables which used
boldfaced letters. This means we calculated not the truth-tables of specific
sentences that mean something, but rather we showed that any two sentences
exhibiting specific forms have the same truth-tables. They are logically equiv-
alent, which, as we said in lecture 2, is our way of capturing for the formal
language what the phrase ‘to say the same thing’ means when applied to
sentences of ordinary English.

We also came across another example of a sentence of English which could
be formalised in two different ways:

Mary and Nancy are not both playing the piano.

The two options are:

(i) ∼ M∨ ∼ N
(ii) ∼ (M&N)

Notice the difference between this pair and the pair we just discussed.
In this case, too, both sentences of the formal language say the same thing
as they have the same truth-table. This is the truth-table for ∼ M∨ ∼ N :

M N ∼ M ∼ N ∼ M∨ ∼ N
T T F F F
T F F T T
F T T F T
F F T T T

And this is the truth-table for ∼ (M&N):

M N M&N ∼ (M&N)
T T T F
T F F T
F T F T
F F F T

As in the previous example, both formal sentences have the same truth-table
and are thus logically equivalent.

The two logical equivalences we have now recorded are so prominent in
logic that they have a name. They are called DeMorgan’s Laws.
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DEMORGAN’S LAWS. ∼ (M&N) and ∼ M∨ ∼ N are logically equivalent,
and so are ∼ M& ∼ N and ∼ (M ∨N).

We now introduce a further connective into our formal language. It is the
conditional. It allows us to formalise sentences like

If Kate is a brunette, then Luke does not prefer blondes.

We use the symbol ⊃, often called the ‘horseshoe’, to represent ‘If-then...’.
Thus the example is formalised as:

K ⊃ ∼ J

A sentence of the form P ⊃ Q is called a conditional, where P is called the
antecedent and Q is called the consequent of the conditional.

‘If-then...’ is very closely connected to logical consequence. We often
express arguments by using ‘If-then...’, e.g. ‘If Alice is either in Paris or in
Rome, but not in Paris, then she must be in Rome’. We need to take this
into account when constructing a suitable truth-table for ⊃. Appealing to
the definition of valid and invalid arguments, the connection between sen-
tences using ‘If-then...’ and arguments suggests, first, that if the conditional
is true and the antecedent of the conditional is also true, then the consequent
should be true, and, secondly, that if the antecedent is true and the conse-
quent is false, the conditional should be false. These considerations give the
first two lines of the truth-table for ⊃:

P Q P ⊃ Q
T T T
T F F
F T
F F

What about lines three and four? We have four options: (i) both are F, (ii)
line three is T and line four is F, and (iii) line three is F and line four is T,
(iv) both are T. Let’s consider every option one by one.

Option (i). Both remaining lines are F.
Then the truth-table for ⊃ would look like this:
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P Q P ⊃ Q
T T T
T F F
F T F
F F F

This is just the truth-table for conjunction. But we certainly don’t want
’If-then...’ to mean the same as ‘and’. Hence this truth-table is not suitable
for ⊃, if it is to mean ‘If-then’.

Option (ii). Line three is T and line four is F.
Then the truth-table for ⊃ would look like this:

P Q P ⊃ Q
T T T
T F F
F T T
F F F

The row underneath P ⊃ Q has exactly the same combination of Ts and Fs
in it as does Q on its own in the second row of the table. In other words, if
this was the truth-table for P ⊃ Q, then it would say the same thing as plain
Q, which certainly doesn’t match ‘If-then...’ in English. Hence this isn’t an
option for a truth-table for ⊃ either.

Option (iii). Line three is F and line four is T.
Then the truth-table for ⊃ would look like this:

P Q P ⊃ Q
T T T
T F F
F T F
F F T

If this was the truth-table for ⊃, then A ⊃ B is true just in case A and B
have the same truth-value, i.e. A ⊃ B would say that A and B are true and
false under the same circumstances. But ‘If-then...’ really should be weaker
than that: we want to say that if A is true, so is B, but if B is true, ‘If
A then B’ need not say anything about A. This reasoning shows that the
correct truth-table for ⊃ is the remaining option (iv).

Option (iv). Both remaining lines are T.
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Then the truth-table for ⊃ looks like this:

P Q P ⊃ Q
T T T
T F F
F T T
F F T

This is the only option we have for a truth-table for a formal analogue of
‘If-then...’ in the framework we have chosen.

The truth-table for ⊃ has certain counterintuitive consequences of the
kind we have already encountered when discussing the notion of validity. For
instance, consider the following conditional:

If it is raining and it is not raining, then the moon is made of cheese.

Writing R for ‘It is raining’ and M for ‘The moon is made of cheese’, we can
symbolise this sentence as

(R& ∼ R) ⊃ M

Calculating its truth-table gives the following:

R M ∼ R (R& ∼ R) (R& ∼ R) ⊃ M
T T F F T
T F F F T
F T T F T
F F T F T

The sentence is a logical truth! It cannot possibly be false as the last row of
the truth-table contains only Ts.This mirrors exactly the counter-intuitive
fact that an argument is logically valid according to our definition if its
premises are inconsistent. Thus at least no essentially new counter-intuitive
consequences ensue from the truth-table for the conditional. To the contrary,
because such sentences as the above come out as logical laws, we can say that
the conditional adequately captures the notion of validity defined earlier.

Here are two further counterintuitive consequences of the truth-table for
⊃. As a matter of fact, the moon is not made of cheese. Now consider the
following sentence:
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If the moon is made of cheese, then it is raining.

Translated into the formal language, this is:

M ⊃ R

The last two lines of the truth-table for ⊃, those where the antecedent is
false, both have a T underneath P ⊃ Q, i.e. in these cases the conditional is
true. Hence no matter what the weather, the truth-table for ⊃ determines
that this sentence is true, given that as a matter of fact the moon is not
made of cheese!

Now consider the contraposition of the sentence (the contraposition of
P ⊃ Q is ∼ Q ⊃∼ P):

If it is not raining, then the moon is not made of cheese.

Its symbolisation in the formal language is:

∼ R ⊃∼ M

Lines one and three of the truth-table for ⊃, those were the consequent is
true, both have a T underneath P ⊃ Q, i.e. in these cases the conditional is
true. Hence no matter what the weather, the truth-table for ⊃ determines
that this sentence is true, given that as a matter of fact the moon is not
made of cheese!

These counterintuitive truth-conditions for conditionals in the formal lan-
guage are consequences of our decision to accept only two truth-values and
only truth-functional connectives. There just isn’t another connective that
avoids these consequences in the framework we have chosen. Intuition may
be stretched if we translate sentences of the formal language using ⊃ back
into English sentences using ‘It-then’. However, intuition is not stretched
to much if we keep in mind the decisions we have made at the beginning:
a consequences of these decisions is that we only have a very weak condi-
tional. In fact, any sentence P ⊃ Q is logically equivalent to ∼ P ∨Q and
∼ (P& ∼ Q), as you can check by constructing truth-tables for each sentence.
In our formal language, M ⊃ R, e.g., says no more nor less than ∼ M ∨ R
and ∼ (M& ∼ R). And intuition is stretched a lot less (if at all) when it is
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noted that these are both true, as the moon is not made of cheese. It is worth
keeping this in mind when you are inclined to think that the conditional of
our formal language is somehow defective because of such counterintuitive
examples. In any case, the conditional of the formal language has a perfectly
good and precise meaning, as determined by its truth-table. We thus need
not explain the meaning of ⊃ with reference to the conditional in ordinary
English at all. We can be content with saying that ⊃ is as close as we can
get in the formal language to defining a connective that has some of the
characteristics of ‘If-then’ in ordinary English.
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The third option for a truth-table for the conditional we discussed in the
last lecture (and rejected as unsuitable for a conditional) actually gives the
truth-table for a useful other connective. We said that this truth-table is not
appropriate for a conditional, because it is somewhat too strong: it gives a
sentence which is true just in case both component sentences have the same
truth-value. Let’s use a new symbol to designate the connective with this
truth-table:

P Q P ≡ Q
T T T
T F F
F T F
F F T

Then A ≡ B says that if A is true, then B is true, and if B is true, A is true;
in other words, A if and only if B (or A iff B for short). ≡ is therefore called
the biconditional, and A ≡ B is logically equivalent to (A ⊃ B)&(B ⊃ A), as
you can verify yourself by calculating its truth-table. The biconditional can
be used to express logical equivalences in our language, e.g. those stated in
DeMorgan’s Laws: (∼ A∨ ∼ B) ≡∼ (A&B) and (∼ A& ∼ B) ≡∼ (A ∨ B).
If two sentences are logically equivalent, then the biconditional having them
to the left and right of ≡ is logically true.

In lecture 3 I mentioned that we build up our formal language in two
stages. First we consider only sentential connectives, then in the second
stage we add the quantifiers ‘some’ and ‘all’. We have now introduced all
the symbols of the first stage of our symbolic language. They are &,∼,∨,⊃
and ≡. We now need to discuss the ‘grammar’ of the language in some detail.
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The grammar of a formal language is called its syntax. It makes precise how
to construct sentences of the formal language and how parentheses are to be
used as punctuation marks.

You will remember that there is a difference between boldfaced letters P,
Q, R and normal-faced ones A, B, C etc.. We use the latter to abbreviate
sentences of English and by giving an interpretation of them. The former we
use to talk about such sentences. A, B, C etc. are sentences of our symbolic
language, but P, Q, R are not. We say that P, Q, R are metavariables
which range over expressions of the symbolic language. When we talk about
a language, we do so in the metalanguage. By contrast, we call the symbolic
language where A, B, C etc. are used to stand for sentences of English the
object language. We also give the object language a short label: SL.

We can now give a precise definition of how sentences of SL are to be
constructed. The expressions of the language are the sentence letters A, B,
C etc. and the truth-functional connectives &,∼,∨,⊃ and ≡, and there are
parentheses ( and ) as punctuation marks. The definition of ‘sentence of SL’
is going to be what is called an inductive definition:2 we first lay down what
the simplest sentences are and then give a method for how to construct more
complex sentences from less complex ones. Any sentence of the language
is constructed in a step-by-step way from sentence letters, connectives and
parentheses according to the following method:

1. Every sentence letter is a sentence.
2. If P is a sentence, then ∼ P is a sentence.
3. If P and Q are sentences, then (P&Q) is a sentence.
4. If P and Q are sentences, then (P ∨Q) is a sentence.
5. If P and Q are sentences, then (P ⊃ Q) is a sentence.
6. If P and Q are sentences, then (P ≡ Q) is a sentence.
7. Nothing is a sentence unless it can be formed by repeated

application of clauses 1-6.

Notice the parentheses around the sentence in clauses 3-6. Strictly speaking,
any sentence of SL must have a pair of outer parentheses. We adopt the
convention that we may drop these.

2‘Inductive’ as used here is not to be confused with ‘inductive’ as discussed in lecture
2, which concerned generalisations of statements on the basis of empirical evidence. The
method of induction used in the definition of what a sentence of SL is also called ‘math-
ematical induction’. Empirical generalisations lack the kind of logical necessity we are
interested in in logic, mathematical induction doesn’t.
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Here are some examples of sentences of SL:

((A&B) ∨ (A&C))
(A ⊃ (B ⊃ A))
((∼ A& ∼ B) ≡∼ (A ∨B))
∼ (A ⊃ B)
(A& ∼ A)
(∼ A ∨ A)

Here are some examples of strings of symbols that are not sentences:

∼ A&B ∨ C ⊃ A
A ∼ B
∼ AB ⊃ (C ≡ C)
A&B&C
A ∨ (B&C) ≡ (A ∨B)&(A ∨ C)

We already discussed an example where parentheses were needed to translate
sentences of English into the formal language: in lecture 4, ∼ K∨ ∼ J
and ∼ (K∨ ∼ J) were used to abbreviate different sentences of English.
Both have different truth-tables and thus mean different things. Without
parentheses, ambiguities would arise. Consider, for instance, A∨B&C. This
is not a sentence of SL. The reason is that it would be an ambiguous sentence:
if you wanted to calculate its truth-table, you wouldn’t know whether to use
the one for ∨ first and then the one for &, or whether to proceed conversely.
Parentheses indicate the order in which truth-table calculation proceeds and
thereby ambiguity is avoided.

We now introduce some syntactical terminology that allows us to describe
sentences of SL. First, a sentence of SL consisting only of a sentence letter is
an atomic sentence. The next three clauses define what the main connective
and the immediate sentential components of a sentence are:
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1. If P is an atomic sentence, P contains no connectives and hence
does not have a main connective. P has no immediate sentential
components.

2. If P is of the form ∼ Q, where Q is a sentence, then the main
connective of P is the tilde that occurs before Q, and Q is the
immediate sentential component of P.

3. If P is of the form Q&R, Q ∨R, Q ⊃ R, or Q ≡ R, where Q and
R are sentences, then the main connective of P is the connective
that occurs between Q and R, and Q and R are the immediate
sentential components of P.

Here are some examples:

Sentence: Main Con.: Imm. Sent. Comp.:
((A&B) ∨ (A&C)) ∨ (A&B), (A&C)
(A ⊃ (B ⊃ A)) ⊃ A, (B ⊃ A)
((∼ A& ∼ B) ≡∼ (A ∨B)) ≡ (∼ A& ∼ B), ∼ (A ∨B)
∼ (A ⊃ B) ∼ (A ⊃ B)
(A& ∼ A) & A, ∼ A
(∼ A ∨ A) ∨ A, ∼ A

The sentential components of a sentence are the sentence itself, its immediate
sentential components, and the sentential components of its immediate sen-
tential components. The atomic components of a sentence are the sentential
components which are atomic sentences. So, using again the sentences of the
last example, this table gives their sentential components:
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Sentence: Sentential Components:
((A&B) ∨ (A&C)) ((A&B) ∨ (A&C)),

(A&B), (A&C),
A, B, C

(A ⊃ (B ⊃ A)) (A ⊃ (B ⊃ A)), (B ⊃ A), A, B

((∼ A& ∼ B) ≡∼ (A ∨B)) ((∼ A& ∼ B) ≡∼ (A ∨B)),
(∼ A& ∼ B), ∼ (A ∨B),
∼ A, ∼ B, A ∨B, A, B

∼ (A ⊃ B) ∼ (A ⊃ B), (A ⊃ B), A, B

(A& ∼ A) (A& ∼ A), ∼ A, A

(∼ A ∨ A) (∼ A ∨ A), ∼ A, A
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SL: Truth and Falsity

At the end of the second lecture we discussed what it means that something
is possible according to the notion of possibility used in the definitions of
logical validity, logical truth, logical falsehood etc.. I gave an example of an
argument where it was not obvious whether it is possible for the premises to
be true and the conclusion false:

(1) Every beautiful person is a girl.
(2) No boy is a beautiful person.
(3) No boy is a girl.

We explicated the intuitive notion of possibility used in the definitions by
appealing to the notion of formalisation. We said that possibility as used in
the definitions should be understood with reference to the form of sentences
and arguments: if it is not possible for the premises of an argument to be true
and its conclusion to be false, then we should understand this as meaning
that no argument of this form can have true premises and a false conclusion.

Our intuitive notion of possibility has, I suppose, little or nothing to do
with formalisation. Thus the observations at the end of the second lecture
call for new definitions of the basic logical concepts using the tools of formali-
sation rather than the intuitive notion of possibility. We introduced methods
of formalisation in the third and fourth lectures, i.e. we introduced symbols
and their truth-tables, and we defined the syntax of the language SL, which
we use for formalisation. Now that we have these tools, in the next two
lectures we will give new definitions of the basic logical concepts which avoid
the intuitive notion of possibility altogether.

Notice the dialectics: we start with an intuitive notion of possibility in
terms of which we define basic logical concepts. We then discover that these
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intuitive definitions do not quite settle in every case whether an argument is
valid or not. In particular, this is due to a conflict that is brought out by the
example above: on the one hand, it seems as if it is not possible for a boy to be
a girl, given what we mean by ‘boy’ and ‘girl’, so the argument should be valid
on the grounds alone that that its conclusion cannot be false; on the other
hand, however, logic should have a kind of generality that is independent of
particular subject matters, like boys and girls. We resolved the conflict by
explicating the notion of possibility in terms of the form of an argument.
This effectively allows us to avoid the notion of possibility altogether in the
definitions of basic logical concepts. We won’t follow the course of defining
the basic logical notions of in terms of the forms of sentences and arguments,
though, but introducing the methods of formalisation nonetheless gives us
the tools to formulate new definitions which make no use of the notion of
possibility and therefore do not rely on intuitions anymore. It remains to
explicate in some more detail what is meant by the form of sentences and
arguments, and how it is determined whether all arguments of a certain form
are valid or not.3

Before we redefine the basic logical concepts, we need to introduce some
more terminology and logical tools. Last lecture we discussed the syntax of
the formal language SL and gave a precise definition of what counts as a
sentence of SL. In this and the next lecture we will discuss what is called
the semantics of SL in some detail. Semantics concerns the truth-conditions
and truth-values of sentences. Just as we have first introduced the formal
language on an intuitive basis and then gave precise definitions in lecture five,
we have first introduced semantic notions intuitively via the truth-tables and
now proceed to more precision.

One of the most important features of the formal language is that its
sentences and the truth-tables for its connectives are constructed in such a
way that the truth-value of every sentence is uniquely determined by the
truth-values of their atomic components. The truth-value of complex sen-
tences can be calculated on the basis of the truth-values of the atomic ones.
Thus, if a truth-value is assigned to each atomic sentence of the language of
SL, the truth-values of all the sentences of SL are determined. We call such
an assignment of truth-values to the atomic sentences of SL, unsurprisingly,

3The preliminary way in this objective has been approached in the second lecture could
also be extended to notions relating to sentences: e.g., if no sentence of a certain form
can be false, the sentence is logically valid. Question: can we extend it to cover also the
notion of logical equivalence?
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a truth-value assignment :

DEFINITION. A truth-value assignment is an assignment of truth-values
(Ts or Fs) to the atomic sentences of SL.

Thus a truth-value assignment specifies for each atomic sentence of SL, and
hence, by the truth-tables, for every sentence of SL, whether it is true or
false.

Notice that we assume that the atomic sentences of SL are independent
of each other. This means that the truth-value of one atomic sentence does
not effect the truth-value of another atomic sentence. More precisely, for any
two atomic sentences, we consider all four combinations of the two truth-
values T and F. Thus we abstract a good deal from ordinary language. For
instance, it is arguably impossible for ‘a is red’ and a is green’ to be both
true: nothing can be both red and green. These two sentence also look very
‘atomic’: they are not composed of any other, simpler sentences. But with
respect to the formal language, either we have to conclude that these are
not after all atomic sentences, or that after all something can be both red
and green, or, best of all options, we ignore that, given what ‘red’ and green’
mean, nothing can be both red and green. The last option again makes use
of the methodology we have been using since the first lecture: we are always
interested in the more general case; we ignore the particulars and aim at gen-
erality. We don’t care an awful lot about what sentences actually mean; we
only care about the form of sentences. It may well be true that certain sen-
tences which arguably are ‘atomic’ sentences – and notice that this is a very
precise term: we would definitely translate ‘a is red’ into SL by using a single
sentence letter and giving it this interpretation – of ordinary language have
a meaning such that not all four possibilities of combinations of truth-values
are possible. Nonetheless, in ignoring this fact we do not exclude anything;
if we assume that all four possibilities can obtain, we definitely take into
account the three possibilities that ordinarily we think are all that is given.
And in any case, ignoring that ‘a is red’ and ‘a is green’ cannot be both
true together, given what they ordinarily are taken to mean, does not ignore
anything we couldn’t get into an argument after all by incorporating into
the argument the information reflection on the meanings of ‘red’ and ‘green’
supplies. Suppose we have an argument in which both sentences figure, for
instance:
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(1) a is red.
(2) Therefore, a is not green.

Let’s use the following interpretation of the language of SL:

Letter: Sentence it abbreviates:
R a is red.
G a is green.

Then formalising the argument shows that we shouldn’t count it as valid,
given our explication of the notion of possibility in terms of formalisation,
because there certainly are arguments of the following form which have a
true premise but a false conclusion, i.e. are invalid:

(1)’ R
(2)’ ∼ G

It is, however, very easy to make the argument valid by adding a further
premise. The formalisation does not take into account the intended meaning
of the sentence letters, but R and G should not be both true given their
interpretation. We can of course add this information as a further premise.
If R and G are not supposed to be both true, then ∼ (R&G) is true. And if
we add this as a premise, the argument becomes valid:

(x) ∼ (R&G)
(1)’ R
(2)’ ∼ G

To conclude this discussion we note that all the information that consid-
erations of the meanings of sentences of English give us may be added as
additional premises to arguments. That way we do justice to our intuitions
concerning what is possible and what is not, given what sentences of ordinary
English mean. It is, accordingly, not very problematic that the notion of a
truth-value assignment assumes atomic sentences to be independent of each
other, which deviates strongly from ordinary English.

We assume a truth-value assignment to assign a truth-value to every
sentence letter of SL. SL has infinitely many sentence letters. So we can-
not actually write a complete truth-value assignment down. However, if we
consider a particular sentence and wish to calculate its truth-value, only a
fragment of a truth-value assignment suffices, namely that fragment which
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assigns truth-values to the atomic components of the sentence. And this
fragment is finite, as any sentence has only finitely many atomic compo-
nents. Similarly, if we want to calculate the truth-table of a sentence, we
only need to take into account every combination of Ts and Fs for those
atomic sentences that actually occur in the sentence (as we have been doing
in the last lectures). So, for instance, if there is only one atomic sentence
in the sentence, the truth-table has only two rows, as there are only two
combinations of Ts and Fs, and these are the only cases we need to consider:

A ∼ A A∨ ∼ A
T F T
F T T

Each row in the table corresponds to a fragment of several truth-value as-
signments. A truth-value assignment assigns a truth-value to every sentence
letter of SL. But all that interests us in calculating truth-table for A∨ ∼ A
is the part of them that determines the truth-value of A. Whatever a truth-
value assignment does to the other sentence letters of SL, e.g. B, C, D etc.,
does not affect the truth-value of A∨ ∼ A, as they are not atomic compo-
nents of that sentence, so we need not take this information into account
when calculating the truth-table.

If a sentence has two atomic components, the truth-table has four rows,
e.g.:

A B A&B ∼ B ∼ (A&B) ∼ (A&B) ≡∼ B
T T T F F T
T F F T T T
F T F F T F
F F F T T T

Again, we need not take into account all the other assignments of truth-values
to sentence letters that truth-value assignments make: all we are interested
in are fragments of them, and there are only four different kinds of truth-
value assignment that we need to consider: the first row stands for all those
assignments assigning T to both A and B, the second stands for all those
assigning T to A and F to B, the third stands for those assigning F to A
and T to B and the fourth stands for all those assigning F to both A and B.
Each row in fact corresponds to the set of truth-value assignments that agree
on which truth-values they assign to the two sentence letters A and B. We
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will allow ourselves the terminological luxury of speaking of the truth-value
assignment assigning, for instance, T to A and F to B, or corresponding to
the third line of the truth-table, even though there is not one unique such
truth-value assignment.

If a sentence has three atomic components, the truth-table has eight rows,
e.g.:

A B C (A&B) (A&B) ∨ C
T T T T T
T T F T T
T F T F T
T F F F F
F T T F T
F T F F F
F F T F T
F F F F F

This is already quite a large truth-table, and you won’t ever see a larger one
in these lectures! (Although you may in exercises ... )

And so on. In general, if a sentence has n atomic components, its truth-
table has 2n rows. This means that truth-tables very quickly get very large
and unwieldy. But in many cases we are not actually interested in the whole
truth-table. Rather, we are interested either in a specific line of the truth-
table, or in whether a truth-table has a line of a specific form. Here are two
definitions that capture what is going on at each line:

DEFINITION. A sentence is true on a truth-value assignment if and only if
it has the truth-value T on the truth-value assignment.

DEFINITION. A sentence is false on a truth-value assignment if and only if
it has the truth-value F on the truth-value assignment.

Now consider, for instance, the question whether (A&B)∨C is equivalent to
A&(B ∨ C). We should expect that they are not. To show this, it suffices
to find one truth-value assignment on which one of them is true and the
other false. For instance, all the truth-value assignments sharing the fourth
row of the truth-table for (A&B)∨C will do, because on these assignments,
A&(B ∨ C) is false, while (A&B) ∨ C is true, as the following calculation
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shows, where we only calculate the one row we are interested in now:

A B C B ∨ C A&(B ∨ C)
F T T T F

Such a construction is called a shortened truth-table. This single line of
a truth-table together with the 4th line of the truth-table for (A&B) ∨ C
shows that there are truth-value assignments on which one of the sentences
is true and the other false, which shows that they are not equivalent. Hence
to show this we do not need to calculate the complete truth-tables, because
we need not consider all truth-value assignments, but only some of them
which have the right properties.

We can now give a definition in terms of truth-value assignments that
replaces the notion of logical equivalence:

DEFINITION. Sentences P and Q of SL are truth-functionally equivalent if
and only if there is no truth-value assignment on which P and Q have dif-
ferent truth-values.

We also have the terminology at hand to redefine the notions of truth-
functional truth, falsity and indeterminacy:

DEFINITION. A sentence P of SL is truth-functionally true if and only if P
is true on every truth-value assignment.

For instance, A∨ ∼ A is truth-functionally true, as on every truth-value as-
signment it comes out as true, as its truth-table shows. Truth-functionally
true sentences are also called tautologies.

DEFINITION. A sentence P of SL is truth-functionally false if and only if
P is false on every truth-value assignment.

For instance, A& ∼ A is truth-functionally false, as on every truth-value
assignment it comes out as false, as its truth-table shows. Truth-functionally
false sentences are also called contradictions.

DEFINITION. A sentence P of SL is truth-functionally indeterminate if and
only if P is neither truth-functionally true nor truth-functionally false.
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For instance, (A&B)∨C is truth-functionally indeterminate, for, as its truth-
table shows, it can be true as well as false on different truth-value assign-
ments. Truth-functionally indeterminate sentences are also called contingent
sentences.

In many cases we are not interested in the whole truth-table for a sen-
tence. This is in particular so if they are very large. Also, mostly we are
interested in whether a sentence of SL has one of the properties just defined.
To find out whether, for instance, a sentence is truth-functionally true, we
need not draw a whole truth-table. All we need to know is that there is no
truth-value assignment on which the sentence is false. We can achieve this
by testing whether we can find a truth-value assignment on which it is true.
Take, for instance, A ⊃ (B ⊃ A). To see whether there is a truth-value
assignment on which it is false, we can start with assuming that calculating
its truth-value for some truth-value assignment gives the truth-value F:

A B B ⊃ A A ⊃ (B ⊃ A)
F

The truth-table for ⊃ tells us furthermore that if A ⊃ (B ⊃ A) is false, then
A must be true and B ⊃ A must be false. We can enter this information in
the table:

A B B ⊃ A A ⊃ (B ⊃ A)
T F F

The truth-table for ⊃ also tells us that if B ⊃ A has the truth-value F, then
B has the truth-value T and A has the truth-value F. But we said already
that A must be T if A ⊃ (B ⊃ A) is F! Hence our attempt to find a truth-
value assignment on which A ⊃ (B ⊃ A) is assigned the truth-value F failed:
we reached a contradiction and cannot complete the shortened truth-table.

Similarly, if we want to know whether a sentence is truth-functionally
false, it suffices to test whether there can be a truth-value assignment on
which it gets the truth-value T. And if we want to find out whether a sentence
is truth-functionally indeterminate, it suffices to find out whether is one
truth-value assignment on which it is true and another one on which it is
false.

It may be necessary to consider more than one line when constructing
a shortened truth-table. Take, for instance, ∼ (A& ∼ B) ≡ (A ⊃ B), and

Nils Kurbis: Introduction to Logic 49



Lecture 6 Semantics: Truth and Falsity

assume we want to find out whether it is truth-functionally true. First, we
assume that there is a truth-value assignment on which this sentence can be
false:

A B ∼ B A& ∼ B A ⊃ B ∼ (A& ∼ B) ∼ (A& ∼ B) ≡ (A ⊃ B)
F

But then we have two ways of continuing, as the truth-table for ≡ says that
a sentence P ≡ Q can be false on a truth-value assignment under two condi-
tions: if P is true and Q is false, and if P is false and Q is true. So we need
to add a further row to cover both cases:

A B ∼ B A& ∼ B A ⊃ B ∼ (A& ∼ B) ∼ (A& ∼ B) ≡ (A ⊃ B)
T F F
F T F

We continue with each row separately. Applying the truth-table for negation
gives adds the following information: if ∼ (A& ∼ B) is T, then A& ∼ B is
F, and if ∼ (A& ∼ B) is F, then A& ∼ B is T:

A B ∼ B A& ∼ B A ⊃ B ∼ (A& ∼ B) ∼ (A& ∼ B) ≡ (A ⊃ B)
T T F F
F F T F

Now we can use the information in the first row to give the truth-values of
A and ∼ B, because A& ∼ B can only be T if they both are T:

A B ∼ B A& ∼ B A ⊃ B ∼ (A& ∼ B) ∼ (A& ∼ B) ≡ (A ⊃ B)
T T T T F F

F F T F
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But now we run into trouble: if ∼ B is F, then B must be T, but if A ⊃ B
is F, then A must be T and B must be F. But B cannot be both T and F,
so we cannot complete the first row of the shortened truth-table. Thus we’ve
closed off one option for constructing a truth-value assignment on which
∼ (A& ∼ B) ≡ (A ⊃ B) is false.

Of course there is still the other option to be considered. In the second
row, the F under A ⊃ B gives us the information that A must be T and B
must be F:

A B ∼ B A& ∼ B A ⊃ B ∼ (A& ∼ B) ∼ (A& ∼ B) ≡ (A ⊃ B)
T T T T F F
T F F F T F

But if B is assigned the truth-value F, then ∼ B must be assigned the truth-
value T, and as A is assigned the truth-value T, too, A& ∼ B must be
T. But we have already given it the truth-value F. Hence again we reach a
contradiction can cannot complete the shortened truth-table. This has closed
off the other option for ∼ (A& ∼ B) ≡ (A ⊃ B) to be false, and thus it
follows that there cannot be a truth-value assignment on which this sentence
is false, and hence it must be truth-functionally true.

You will have noticed that there were several options of how to continue
entering information into the shortened truth-table. For instance, in the first
row, instead of using the information that A& ∼ B is T, we could have used
the information that A ⊃ B is T. However, using this information would
have resulted in more cases to be considered, as there are of course three
ways for A ⊃ B to be true on a truth-value assignment. Similarly, in the
second row, instead of using the information that A ⊃ B is F, we could have
used the information that A& ∼ B is F. Again, this would have resulted
in three new cases to be considered. In other words, the choice of which
information to use and how to continue trying to complete the shortened
truth-table was motivated by a strategy to create a shortened truth-table
which is as short as possible. A general method for constructing shortened
truth-tables economically is always to continue with those truth-values, if
possible, which are the only one of their kind in the last row of a truth-table
for a connective of SL, i.e. F in the case of sentences of the form P∨Q and
P ⊃ Q, and T in the case of sentences of the form P&Q.
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SL: Consistency and Validity

At the very beginning of this lecture series it has been claimed that logic is
about arguments. But since then we haven’t actually seen any arguments
anymore. We’ll do something about this very soon.Unfortunately, before we
can do so we need to work towards finishing the replacement of intuitive
logical concepts defined in terms of logical possibility with notions defined in
terms of truth-value assignments. Luckily, though, we need only introduce
one concept, and then we’ll look at a real argument and use the insights from
the discussion to define some more terms!

We have so far re-defined the notions of logical truth, falsity, indetermi-
nacy and equivalence in terms of truth-value assignments, and we called the
re-defined notions truth-functional truth, falsity, indeterminacy and equiva-
lence, respectively. Next we’ll have a look at the notions of logical consistency
and inconsistency. Consider the set consisting of the following two sentences:

(1) Jo is a girl.
(2) Jo is a boy.

Is this set logically consistent or inconsistent? You should guess by now what
I’m going to say on that issue. Of course, given the meanings of ‘boy’ and
‘girl’ in English, these two sentences cannot both be true together, and hence
the set should count as logically inconsistent. However, and that’s something
you’ve heard a few times by now, logic should be general, rather than being
tied to particular subject matters such as boys and girls. As we’ve seen in
the last lecture, the concept of a truth-value assignment completely abstracts
from the content of sentences, and in this way insures the kind of generality
we are aiming for (recall my comments on formalisation in earlier lectures).
So we need to re-define the notions of logical consistency and inconsistency
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in terms of truth-value assignments. The definitions shouldn’t be altogether
too surprising, so here they are:

DEFINITION. A set of sentences of SL is truth-functionally consistent if and
only if there is a truth-value assignment on which all the members of the set
are true.

DEFINITION. A set of sentences of SL is truth-functionally inconsistent if
and only if it is not truth-functionally consistent.

Suppose we use the following interpretation:

Letter: Sentence it abbreviates:
B Jo is a boy.
G Jo is a girl.

We can then see that there is no problem in assigning T to both B and G
(forgetting, so to say, what the sentences they represent mean!), hence there
is at least one truth-value assignment (and in fact infinitely many of them)
on which both are true.

If, as a matter of fact, Jo cannot both be a boy and a girl, we can do jus-
tice to our intuitions by adding another sentence to the set which expresses
this fact, namely ∼ (B&G). Then the following set is truth-functionally in-
consistent:

{B, G,∼ (B&G)}

In case you are not familiar with this notation, it is common to write sets
by listing the objects in the set and enclosing them in curly brackets, as in
the example (of course, this can only be done if there are only finitely many
objects in the set!).

And now it’s time for an argument. Consider the following passage I
came across in a book on the Black Death in Ireland:4

If the causative pathogen was Yersinia pestis, then it was carried
by the black rat, which was to be found primarily in large cities,
especially ports, and which thrives in dry surroundings such as

4Maria Kelly: The Great Dying: A History of the Black Death in Dublin, 2002.
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grain depots and in the holds of ships. Because the black rat
itself is very sedentary and rarely travels outside a limited ra-
dius, the bacillus is usually transmitted over wide areas by the
passive transport of the rat and flea. Ships carrying grain or
cloth brought infected rats into the ports of Europe, and infected
fleas most likely travelled in the merchandise of merchants and
mariners. Alternatively, if the epidemic was caused by some other
pathogen, then it was most likely carried by merchants and trav-
ellers and transmitted by direct contact.

It is fairly obvious (making some non-controversial assumptions) that it fol-
lows from this passage that the causative pathogen of the plague was trans-
mitted through transport by ship. This can easily be shown by applying
methods of logic in analysing and formalising the passage. The first question
to answer is how to translate this argument most economically into SL. We
don’t need to translate every piece of information we get from this passage
with its own sentence letter (although of course we could proceed that way).
It suffices to focus on the main strands of the argument. For instance, the
information about the habitat of the black rat is not essential to the main
point of the first sentence, which is that (1) if the causative pathogen was
Yersinia pestis, then it was carried by the black rat. Of course, the infor-
mation this passes over is supportive of a further point made in the next
sentence. However, here too we need not pay too much attention to detail,
because the main point is that (2) if the causative pathogen was carried by
the black rat, then it was transmitted through transport by ship. The third
sentence, too, gives some additional information, but again, we can leave it
at noting that this information is used to support the truth of the two main
points. Notice the overlap in vocabulary used to state (1) and (2). This
will inform the use of sentences letters in formalisation as well as the further
analysis of the argument. Using phrases we have already used in stating the
main points of the first three sentences of the argument, as well as making
some non-controversial assumptions about how people travelled to Ireland
in prior to 1348, we can say that the fourth sentence states that (3) if the
causative pathogen was not Yersinia pestis, then it was transmitted through
transport by ship.

We have now isolated three premises that are stated in the argument.
Our analysis motivates using the following interpretation for purposes of for-
malisation:
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Letter: Sentence it abbreviates:
A The causative pathogen was Yersinia pestis.
B The causative pathogen was carried by the black rat.
C The causative pathogen was transmitted through trans-

port by ship.

The three premises of the argument and their formalisations are then:

Formalisation: Premise:
(1) A ⊃ B If the causative pathogen was Yersinia pestis, then

it was carried by the black rat.
(2) B ⊃ C If the causative pathogen was carried by the black

rat, then it was transmitted through transport by
ship.

(3) ∼ A ⊃ C If the causative pathogen was not Yersinia pestis,
then it was transmitted through transport by ship.

The conclusion of the argument, we said, is that the causative pathogen of
the plague was transmitted through transport by ship, i.e. plain C. How can
we show that C follows from the premises A ⊃ B, B ⊃ C and ∼ A ⊃ C?
Well, it would follow if it is not possible for the premises to be true and
the conclusion false. So what we could try to do is to see whether we can
construct something like a shortened truth-table, not with the purpose of de-
termining the truth-value of only one sentence, but rather where we assume
C to be F and A ⊃ B, B ⊃ C and ∼ A ⊃ C to be all T:

A B C ∼ A A ⊃ B B ⊃ C ∼ A ⊃ C C
T T T F

I use a double line to separate the atomic components of the premises and
conclusion of the argument from its premises, and also to to separate the
premises from the conclusion. For clarity’s sake I have entered plain C twice
in the table, but of course it would have sufficed to enter it only once.

From the assumption that C is F and that B ⊃ C and ∼ A ⊃ C are both
T, it follows that B and ∼ A must both be F, by the truth-table for ⊃:

A B C ∼ A A ⊃ B B ⊃ C ∼ A ⊃ C C
F F F T T T F

But if ∼ A is F, then A must be T, and so, as B is F, it follows from the
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truth-table for ⊃ that A ⊃ B must be F, rather than T, as assumed. Thus
we reach a contradiction and cannot complete the shortened truth-table. It
follows that there is no truth-value assignment on which all premises of the
argument, A ⊃ B, B ⊃ C and ∼ A ⊃ C, are true and the conclusions C is
false. Hence the argument is valid.

Alternatively, we could of course have constructed complete truth-tables
for the premises and conclusions, and then checked whether in each row
where a T occurs underneath every premises, a T also occurs underneath
the conclusion, but as they together have three atomic components, this
would have resulted in a rather large object.

In the last paragraphs we have initially worked with the intuitive notion
of validity defined in terms of possibility, and then worked our way towards
a definition of validity in terms of truth-value assignments. The discussion
should have indicated what the new definition:

DEFINITION. An argument of SL is truth-functionally valid if and only if
there is no truth-value assignment on which all the premises are true and the
conclusion is false.

DEFINITION. An argument of SL is truth-functionally invalid if and only if
it is not truth-functionally valid.

What I called ‘additional’ or ‘supportive’ information in the analysis of the
argument is important to establish that its three premises are in fact true.
This is the reason why we don’t have to take this information into account if
we are just interested in the validity of the argument. But the information
is, of course, vital to establish whether the argument is sound. As was the
case with logical validity, an argument is truth-functional validity or invalid
quite independently of whether its premises are true. Just as we defined
the deductive soundness of an argument we could now, if we liked, define
what it means that an argument is truth-functionally sound. This is a notion
which seems to be uncongenial to Bergmann et al., as it does not appear in
the book. But anyway, the definition would lay down that an argument is
truth-functionally sound if and only if it is truth-functionally valid and the
premises are true on their intended interpretation.

The way truth-functional validity has been defined makes reference to ar-
guments. Bergmann et al. also define a notion of truth-functional entailment
in addition. Entailment holds between a sentence and a set of sentences of
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SL. The definition is:

DEFINITION. A set Γ of sentences of SL truth-functionally entails a sen-
tence P if and only if there is no truth-value assignment on which every
member of Γ is true and P is false.

I am not entirely sure why Bergmann et al. define both these notions. Maybe
they assume that arguments only have finitely many premises, although this
does not follow from their definition, which is that an argument is a set of
two or more sentences, one of which is designated as the conclusion and the
others as the premise. When we consider entailment, no restriction on the
size of Γ is made—although no such restriction has been made on premises
of arguments either, as far as I can see! Anyway, we can now introduce
some notation to abbreviate ‘Γ entails P’. We write this in symbols of the
meta-language as Γ � P.

We can use this notation to state theorems about the semantics of SL. For
instance, in lecture 2 we noted that if a set of sentence is inconsistent, then,
as they cannot all be true together, removing one sentence from the set and
using the denial of its truth as the conclusion of an argument the premises
of which are all the other sentences of the set produces a valid argument. To
express this using the symbols introduced in the last paragraph, denote the
union of two sets Γ and ∆ by Γ ∪ ∆, i.e. this is the set which contains all
members of Γ as well as of ∆. Then what has just been said establishes the
following:

THEOREM. If Γ ∪ {P} is truth-functionally inconsistent, then Γ �∼ P.

The converse is true, too:

THEOREM. If Γ �∼ P, then Γ ∪ {P} is truth-functionally inconsistent.

For, if Γ entails ∼ P, then whenever all sentences of Γ are assigned the
truth-value T, ∼ P is also assigned the truth-value T, and thus P must be
assigned the truth-value F, by the truth-table for negation. Thus whenever
all of Γ are true, P is false, i.e. the sentences in the union Γ∪{P} can never
be all true together, hence this set is truth-functionally inconsistent. Q.e.d.
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SL: Conjunction, Implication

In the last lectures we discussed the semantics of SL, including definitions of
the concepts of validity and entailment in terms of truth-value assignments
and we have introduced ways of determining whether arguments are valid or
sentences entailed by sets of sentences. In principle, we could leave matters
there; in a sense, we have achieved what we wanted: we have devised meth-
ods for determining whether arguments are valid and invalid, which was one
of the aims we formulated for the study of logic. But logic, as we have been
doing it so far, always had two sides, a semantic one and a syntactic one, and
so now that we have dealt with semantic side of arguments, we can expect
this to be supplemented considerations belonging to the syntactic side. Fur-
thermore, the tests for validity introduced in the last lecture always assumed
that we had been given some argument first, i.e. we had a set of premises
and a conclusion, and then we applied the shortened truth-table method or
the complete truth-tables to figure out whether the argument is valid or not,
i.e. whether there is a truth-value assignment making all the premises true
and the conclusion false or not. But in many cases of reasoning in real life
and philosophy we haven’t actually been given an argument, but only a set of
assumptions. In this and the next lecture we will introduce methods for de-
riving sentences from other sentences, which allow us to construct arguments
from assumptions. We call such constructions deductions or derivations.

We proceed in the following way: for each connective of the language SL,
we will give rules that specify what follows from a sentence with this connec-
tive as the main connective, and rules that specify under which conditions
we can infer a sentence with this connective as the main connective. These
rules are called, unsurprisingly, rules of inference or derivation rules. The
first kind of rules are called introduction rules, the second kind elimination
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rules. The introduction rules specify how to introduce a formula with the
main connective into the derivation on the basis of formulas that are already
in the deduction; the elimination rules, however, do not in some sense ‘get
rid’ of some formula: the formula is still in the deduction. The formula is
‘eliminated’ in the sense that we have inferred some other sentence from it:
the eliminated formula is a preliminary conclusion on the way to the conclu-
sion we actually aim to derive from the assumptions given and is ‘eliminated’
because we have shifted our attention from it to something else. This way
we set up what is called a natural deduction system: the rules mirror more or
less closely moves we naturally make when reasoning (up to a certain point).
The system of derivation rules for the connectives ∼, ⊃, ∨, & and ≡ is called
SD.

The rules belong to the realm of syntax, as they do not refer to truth-
value assignments, but only to the structure of sentences of SL. Of course,
to motivate why we use these rules rather than others we will refer to the
intended interpretations of the logical connectives, and this may imply refer-
ring to their truth-tables. Once formulated, however, the rules themselves
will not make any reference to truth-tables, and no reference to the intended
meanings of the connectives, although the rules also succeed in conferring
a certain meaning to the connectives, as they codify their use in deductive
arguments, and this meaning will inevitably be very close to the meanings
conferred on them by the truth-tables—indeed, it is arguable that the mean-
ings conferred on connectives by truth-tables and the meaning conferred on
them by the rules we are going to give are identical, at least assuming that
every sentences is either true or false.5

We first need to address the question of how to structure derivations. We
will do this by first specifying how derivations are started, and then each
rule will tell us how to continue. You’ll recognise the principle: that’s how
we proceeded in the definitions of what counts as a sentence of SL: we give
a basic case, and then explain how to go on. To start a derivation, we list
assumptions of the derivation one underneath the other, then draw a vertical
line to their left and number each and write ‘Assumption’ to the right of
each assumption, and finally close them off from what is going to be the rest
of the derivation by drawing a horizontal line underneath them. So, if, for

5Why is this so? Well, assuming that the rules we are interested in are valid ones, i.e.
always lead from true premises to true conclusions, we can read the rules off the truth-
tables (by asking what rules the truth-tables make valid), and conversely, assuming that
every sentences is either true or false we can read off the truth-tables from the rules.
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instance, your assumptions are A, B and C, we start a derivation by writing:

1 A Assumption

2 B Assumption

3 C Assumption

Derivations are then continued by adding rows generated by applications of
rules of inference. Each new line is also numbered, and we specify how the
line has been derived, by which rules applied to which lines.

We need some rules for the connectives. Let’s start with the simplest
one, conjunction. Obviousl a conjunction P&Q follows if both its conjuncts
P and Q are given. This gives the introduction rule for conjunction. Con-
versely, from the conjunction P&Q both P and Q follow. This gives the
elimination rules for conjunction. We can write the first rule, more congenial
to the subject of formal logic, in the following way:

Conjunction Introduction (&I)

P

Q

� P&Q

This is to be read as meaning that, if amongst the assumptions of the deduc-
tion or amongst any sentence derived from them there are sentences P and
Q, you may add a new row to the deduction in which you write P&Q. We
will have to make this a little bit more precise when all the rules of SD have
been formulated, but for the time being it is precise enough.

Furthermore, if on some line of the derivation P&Q occurs, we may add
a new line, in which we can write P or Q, which we write in the following way:

Conjunction Elimination (&E)

P&Q

� P
or

P&Q

� Q

These are all the rules for conjunction.
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As Arthur Prior once observed, the best way to learn logic is to do logic,
so let’s do a simple derivation, using the rules for conjunction, to see how
the system of natural deduction works. For instance, we can show that from
(A&B)&C we may infer A&(B&C). Notice that the rules are to be under-
stood as quite rigid: if you want to infer P&Q, you need in the derivation first
a row with P in it and in some later row you need Q. This may sound some-
what pedantic, which of course it is, but it helps to remember that the rules
are supposed to be the kind of thing that a computer could be programmed
to use, and a computer has a rather limited ability to carry out commands
and only does exactly what you tell it to do. The rules are intended to be of
such a kind that no ingenuity is needed to apply them. Anyway, here is the
deduction:

1 (A&B)&C Assumption

2 A&B 1 &E

3 A 2 &E

4 B 2 &E

5 C 1 &E

6 B&C 4, 5 &I

7 A&(B&C) 3, 6 &I

That’s a very simple and not very interesting derivation. We need some more
rules for connectives to make derivations more exciting.

The next connective we’ll add to SD is the conditional. It is obvious what
its elimination rule should be: if you have A ⊃ B on a line in a derivation,
and you also have A somewhere, then you can derive B:

Conditional Elimination (⊃E)

P ⊃ Q

P

� Q

This rule is often called modus ponens.
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The introduction rule for ⊃ is more complicated to state than the ones we
had so far, although it is not difficult to see under which conditions you can
derive A ⊃ B: if you can show that, assuming A, B can be derived, then you
should be allowed to derive A ⊃ B. Notice that under these circumstances,
A ⊃ B should be true independently of whether A is true or false, because we
conclude that if A is true, so is B. The conclusion A ⊃ B does not depend
on the truth of A anymore: although the truth of B on its own is conditional
upon the truth of A, the conditional A ⊃ B is true unconditionally.

The way we have just stated informally the introduction rule for ⊃ re-
quires us to add new assumptions to derivations, which we call auxiliary
assumptions, in contrast to the primary assumptions, which are assumptions
taken from a set of sentences which we assume to be true. We do this by
adding a new ‘level’ to the derivation, i.e. we allow there to be more than
one vertical line to the left of formulas. At each step of a derivation, we can
add new auxiliary assumptions, which open up new subderivations and add a
new vertical line. For instance, after having derived a few sentences from our
assumptions A, B and C, we may wish to add a new auxiliary assumption D:

1 A Assumption

2 B Assumption

3 C Assumption

4 A&B 1, 2 &I

5 B&C 2, 3 &I

6 D Assumption

If this subdeduction then ends with a sentence D&A, say, we can apply
material conditional introduction to derive D ⊃ (D&A). Notice what we
have done then: we have, under the assumption D, derived D&A, and then
conclude that D ⊃ (D&A), i.e that if D, then (D&A). This conclusion
does not depend on the assumption D anymore: we have incorporated the
assumption into the antecedent of a conditional, and due to the nature of the
conditional, this allows us to ‘close off’ the subderivation; we do not need to
make the auxiliary assumption D any more.

The rules for conditional introduction, then, is this:
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Material Conditional Introduction (⊃I)

P

Q

� P ⊃ Q

We indicate that the subderivation has been closed off by returning to the
level of the derivation at which the auxiliary assumption has been made.

Here is an example of a derivation using the rules for the material condi-
tional. We show that from A ⊃ B and B ⊃ C we may derive A ⊃ C:

1 A ⊃ B Assumption

2 B ⊃ C Assumption

3 A Assumption

4 B 1, 3 ⊃E

5 C 2, 4 ⊃E

6 A ⊃ C 3–5 ⊃I

Due to the framework in which derivations are carried out, we need to add a
rule which is structural in character and has nothing to do with connectives
of the formal language SL. The rule allows us to repeat a sentence, and is
therefore called Repetition:

Repetition (R)

P

� P

This may look like a rather unnecessary rule, but it is indeed required at
times. Remember that we apply the rules quite mechanically. So if we want
to introduce a conjunction P&Q, we strictly speaking first have to have a
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row with P in it and then a later one with Q in it. Thus the rules is needed
when deriving B&A from A&B, if we first derive A and then B from the
assumption:

1 A&B Assumption

2 A 1 &E

3 B 1 &E

Strictly speaking, we can now not apply &I, because that would only give us
what we already had, namely A&B. So we need repetition:

1 A&B Assumption

2 A 1 &E

3 B 1 &E

4 A 2 R

5 B&A 3, 4 &I

Of course, had we derived first B and then A, we could have derived B&A
from A&B without using repetition:

1 A&B Assumption

2 B 1 &E

3 A 1 &E

4 B&A 2, 3 &I

In many cases, the rule of repetition is not one that in fact needs to be used
– often there are ways of doing derivations which avoid the rule –, but it
allows for a certain amount of flexibility once you have already started your
deduction.

Repetition is, however, necessary in some cases. Consider, for instance,
that B ⊃ A should be derivable from A, as, if A is true, so is B ⊃ A. Here
we need to apply repetition in order to get a derivation of A from B in the
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subderivation:

1 A Assumption

2 B Assumption

3 A 1 R

4 B ⊃ A 2–3 ⊃I

Without repetition the introduction rule for ⊃ would not allow us to infer
B ⊃ A.

Maybe you are asking yourself now, but how do I prove A ⊃ (B ⊃ A),
which is a truth-functional truth? If a sentence is a truth-functional truth,
then it is true independently of any assumptions we are making; no assump-
tion is needed so ensure its truth. Notice that the vertical lines to the left of
sentences indicate which assumptions are made to ensure that the sentences
in each line below the assumptions are true. Thus, if a sentence is a logical
truth, it should have a derivation which ends with a row that has a line to
its left that is not begun by a set of assumptions, i.e. the deduction has only
auxiliary assumptions, but no primary assumptions, and all the subdeduc-
tions begun by them have been closed off. As an example, here is a proof of
A ⊃ (B ⊃ A):

1 A Assumption

2 B Assumption

3 A 1 R

4 B ⊃ A 2–3 ⊃I

5 A ⊃ (B ⊃ A) 1–4 ⊃I

It is obvious that the leftmost vertical line in this deduction plays hardly any
role at all. Alternatively, thus, we could adopt the convention that deduc-
tions of logical truths end in a row with a formula without a vertical line to
its left, to indicate that the sentence is true unconditionally. And thus the
proof of A ⊃ (B ⊃ A) is the following:

Nils Kurbis: Introduction to Logic 65



Lecture 8 Proof-Theory: &, ⊃

1 A Assumption

2 B Assumption

3 A 1 R

4 B ⊃ A 2–3 ⊃I

5 A ⊃ (B ⊃ A) 1–4 ⊃I

A logical truth does not depend on anything for its truth, so no assumptions
need to be made to ensure its truth, and as there is no vertical line to the
left of A ⊃ (B ⊃ A), as a matter of fact the assumptions A and B made in
the course of the derivation are only auxiliary assumptions.

Here is a derivation using the rules for conjunction and for the condi-
tional. We’ll derive (A&B) ⊃ C from A ⊃ (B ⊃ C):

1 A ⊃ (B ⊃ C) Assumption

2 A&B Assumption

3 A 2 &E

4 B ⊃ C 1, 3 ⊃E

5 B 2 & E

6 C 4, 5 ⊃E

7 (A&B) ⊃ C 2–6 ⊃I

The converse is also true, i.e from A&B ⊃ C we can derive A ⊃ (B ⊃ C):
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1 A&B ⊃ C Assumption

2 A Assumption

3 B Assumption

4 A&B 2, 3&I

5 C 1, 4 ⊃E

6 B ⊃ C 3–5 ⊃I

7 A ⊃ (B ⊃ C) 2–6 ⊃I

Notice how here each auxiliary assumption gets its own subderivation. Al-
though derivations can start with any number of assumptions (as long as that
number is finite), subderivations always only start with one assumption. The
reason for this is that we introduce auxiliary assumptions and subdeductions
only to close them off by applications of rules like conditional introduction,
and these rules dictate the structure of the beginnings of subdeductions.
We’ll introduce three more rules that allow to close off subdeductions in the
next lectures.

A last example: from A ⊃ B, we can derive A&C ⊃ B&C

1 A ⊃ B Assumption

2 A&C Assumption

3 A 2 &E

4 B 1, 3 ⊃E

5 C 2 &E

6 B&C 4, 5 &I

7 A&C ⊃ B&C 2–6 ⊃I
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Last week we introduced how to do deductions. This is the most complicated
thing we’ve done so far, so don’t be disappointed if you don’t quite under-
stand how to do a deduction at first attempt. It really is the kind of thing
you have to practice: you have to see some examples of deductions and do
some yourself, and eventually you’ll get the hang of it. One problem surely
is that deductions look rather alien and it may not be completely lucid why
they have the form they do. Here it helps to remember that we need some
way of writing down deductions, some way of how to organise reasoning from
assumptions to a conclusion in a systematic way. There are in fact many dif-
ferent ways of achieving this aim. There is no necessity that we do deductions
in the way we do it here. Thus it is not as if there is always something to be
understood for each detail of a deduction: certain aspects of deductions are
simply chosen arbitrarily, and these are things you have to learn by heart,
as it were, not something that has a deeper reason. It’s a bit like grammar:
there is no deeper, logical reason why the third person singular of many verbs
of English is formed by adding an ‘s’ at its end. That’s just how we speak.
Similarly, there is no deeper reason why we write sentences underneath each
other next to vertical lines. That’s just how we’ve decided to do deductions.
What is important is this: first, we have rules of inferences that tell us pre-
cisely what can be done at each step in a deduction and how conclusions can
be arrived at, and secondly, there is some way of organising deductions that
shows which assumptions are made at which point in the deduction, with
ways of separating subdeductions from the main deduction so that we can
see which assumptions are made on the way to which conclusions.

Last week we introduced the rules for conjunction and the material con-
ditional. This already allowed us to do a few deductions, but not yet very
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interesting ones. Today we’ll add the rules for negation.
Suppose you reason from some assumptions A1 . . . An that, say, a philoso-

pher makes. Now you ask yourself, is what the philosopher says consistent
with another assumption, say B? For instance, you might think that B is an
assumption well worth considering. Now suppose you reason from A1 . . . An

together with the auxiliary assumption B and you arrive at two sentences, C
and ∼ C. What does that mean? The philosopher’s assumptions A1 . . . An

together with B entail two sentences that cannot be true together, i.e. the
set {A1 . . . An, B} is inconsistent: it cannot be the case that all sentences
in this set are true, because, if that were the case, C as well as ∼ C must
be true, as each sentences is entailed by the set, which is impossible. Thus
at least one of the sentences in the set {A1 . . . An, B} must be false. Then
granting the philosopher that his assumptions A1 . . . An are true, it follows
that B must be false, and so ∼ B must be true. Thus we can infer ∼ B
from A1 . . . An, i.e. what the philosopher holds true entails ∼ B. Hence we
have now shown that the philosopher is committed to ∼ B, and that is of
course independent of the auxiliary assumption B: we have shown that the
auxiliary assumption that B together with the other assumptions A1 . . . An

leads to a contradiction, so the philosopher cannot hold that B is true, and
thus he must hold that B is false, i.e. ∼ B is true.

Summarising this reasoning in rule-form, we get the following:

Negation Introduction (∼I)

P

Q

∼ Q

� ∼ P

Applying negation introduction allows us to close off a subderivation which
was started with an auxiliary assumption which has been assumed for reduc-
tio ad absurdum, as this rule is often called. The conclusion drawn does not
depend on the truth of the auxiliary assumption any more, because the as-
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sumption has been reduced to absurdity, and its negation is asserted instead.
Here is an easy deduction making use of this rule. Suppose you assume

A ⊃ B and ∼ B. It should follow that ∼ A, and we can show that it does
with the following deduction:

1 A ⊃ B Assumption

2 ∼ B Assumption

3 A Assumption

4 B 1, 3 ⊃E

5 ∼ B 2 R

6 ∼ A 3–5 ∼I

The inference from A ⊃ B and ∼ B to ∼ A is often called modus tollendo
tollens.

Assume that you assume ∼ A ⊃∼ B and B. Then it should follow that A
is true. For, if A was false, i.e. ∼ A was true, then, by ⊃E, ∼ B would also
be true, but, as we assumed B to be true, we have arrived at a contradic-
tion; thus the auxiliary assumption ∼ A cannot be true, i.e. must be false,
and thus A is true. This exemplifies another rule for negation. If from an
auxiliary assumption of the form ∼ P we derive two sentences Q and ∼ Q,
then we can infer P and close off the subderivation starting with ∼ P:

Negation Elimination (∼E)

∼ P

Q

∼ Q

� P

This rule is also called reductio ad absurdum: this time it is ∼ P that has
been reduced to absurdity, and therefore P must be true. In fact, the two
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rules are equivalent, if ∼∼ A is equivalent to A, which it is as the semantics
of SL shows. Replacing P by ∼ P in ∼E in fact gives an application of ∼I
with conclusion ∼∼ P. Hence instead of using the present rule for negation
elimination, we could use as an alternative rule the rule of double negation
elimination:

Double Negation Elimination (∼∼E)

∼∼ P

� P

Going back to our rule of negation elimination, we can show that from
∼ A ⊃∼ B and B, A can be derived:

1 ∼ A ⊃∼ B Assumption

2 B Assumption

3 ∼ A Assumption

4 B 2 R

5 ∼ B 1, 3 ⊃E

6 A 3–5 ∼E

We could give an alternative deduction using negation introduction and dou-
ble negation elimination: then instead of applying ∼E in line 5, we would
apply ∼I and derive, not A, but ∼∼ A. If we apply double negation elimi-
nation next, we get the desired conclusion A, but in seven steps, rather than
just six.

For the rest of this lecture we’ll mainly practice doing deductions. Now
that we have the rules for negation, conjunction and implication we can
deduce some more interesting things. But first here is a shorter way of
saying that from assumptions A1 . . . An we can derive B: we write this as
A1 . . . An ` B.

Example 1. ∼ A `∼ (A&B):
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1 ∼ A Assumption

2 A&B Assumption

3 A 2 &E

4 ∼ A 1 R

5 ∼ (A&B) 2–4 ∼I

Example 2. A ⊃ B `∼ (A& ∼ B):

1 A ⊃ B Assumption

2 A& ∼ B Assumption

3 A 2 &E

4 B 1, 3 ⊃E

5 ∼ B 2 &E

6 ∼ (A& ∼ B) 2–5 ∼I

Example 3. A ⊃ B, A ⊃ C ` A ⊃ (B&C):

1 A ⊃ B Assumption

2 A ⊃ C Assumption

3 A Assumption

4 B 1, 3 ⊃E

5 C 2, 3 ⊃E

6 B&C 4, 5 &I

7 A ⊃ (B&C) 3–6 ⊃I
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Example 4. ∼ (A& ∼ B) ` A ⊃ B:

1 ∼ (A& ∼ B) Assumption

2 A Assumption

3 ∼ B Assumption

4 A& ∼ B 2, 3 &I

5 ∼ (A& ∼ B) 1 R

6 B 3–5 ∼E

7 A ⊃ B 2–6 ⊃I

Example 5. A ⊃ B, A ⊃∼ B `∼ A:

1 A ⊃ B Assumption

2 A ⊃∼ B Assumption

3 A Assumption

4 B 1, 3 ⊃E

5 ∼ B 2, 3 ⊃E

6 ∼ A 3–5 ∼I

This logical inference is obviously very close to reductio ad absurdum. It
shows that if a sentence implies another sentences and also its negation, then
it must be false.

For a change, let’s have a look at some philosophical arguments. Reductio
ad absurdum is one of the most common principles of reasoning in philoso-
phy. Consider, for instance, reasoning that leads to a paradox: a paradox
often (although not always) has the form that certain assumptions lead to a
contradiction. Here is an example involving two sentences p and s:

p: s is false.
s: p is true.
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If p is true, s must be false, as that is what p says, but then p cannot be
true, as otherwise what s says is true. If p is false, s must be true, but then p
cannot be false, as that is what s says. Either way, we have a contradiction.

What reductio ad absurdum tells you now is that some of your assump-
tions must have been false. In some cases of paradoxes it is notoriously
difficult to say what the wrong assumption was, and in some cases, indeed,
such an investigation has driven rather deep research in mathematics. There
are other examples of paradoxes where it is claimed to be straightforward
what assumptions to reject. Consider, for instance, an argument that leads
to Zeno’s Paradox of the Arrow:

Zenos Paradox of the Arrow:

(1) Consider an arrow moving on a line from point a to point b.
(2) Then the arrow must pass each point of the line one by one: first

it is at a, then at a1, then at a2 etc. etc. until it reaches bn−1, bn

and then finally b.
(3) Let x be a point on the line.
(4) Assume the tip of the arrow is in point x.
(5) Then the arrow is not moving, because what is at one point is at

rest.
(6) But then the arrow does not pass each point of the line one by one,

as it is not moving.
(7) But (6) contradicts (2).
(8) So the arrow is not moving.

We can formalise this argument by letting A stand for ‘The arrow moves’
and B for ‘The arrow passes each point one by one’. Zenos argument makes
use of the principle of reductio ad absurdum. Steps (1)–(2) show that the
assumption that (A) the arrow is moving, implies that (B) it passes each
point one by one (so we could also conclude A ⊃ B). Steps (1)–(6) show
that the assumption that (A) if the arrow is moving, also implies that (∼ B)
it does not pass each point one by one (so we could conclude A ⊃∼ B). Hence
A entails two sentences which cannot be true together, and Zeno concludes
by reductio ad absurdum that (∼ A) the arrow is not moving.

Now consider the following counter-argument to Zeno’s reductio ad ab-
surdum of the assumption that the arrow moves:
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Against Zeno’s Paradox of the Arrow:

(1) Assume Zeno is right and there is no movement.
(2) Nevertheless, the arrow changes its position from a to b.
(3) So there is movement, because that’s just what we mean by move-

ment.
(4) Hence even if there is no movement, there is movement.
(5) Therefore, there is movement.

Is this a good argument? Let A be ‘There is movement’. Steps (1)–(4)
show that if (∼ A) there is no movement, then (A) there is movement, i.e.
∼ A ⊃ A. Let’s see whether we can derive A from this assumption. To do so,
we assume ∼ A ⊃ A and ∼ A and see whether we can derive a contradiction.
If so, we can apply negation elimination and conclude A.

This does indeed work:

1 ∼ A ⊃ A Assumption

2 ∼ A Assumption

3 A 1, 2 ⊃E

4 ∼ A 2 R

5 A 2–4 ∼E

The counter-argument to Zeno’s Paradox is indeed valid. The deduction
establishes a principle called consequentia mirabilis : if A is entailed by its
own negation, then A must be true: ∼ A ⊃ A ` A. I presume you can guess
why this inference has been called ‘the miraculous consequences’ !
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So far we have introduced derivation rules for &, ∼ and ⊃. We now need
rules for ∨. The introduction rule for this symbol is straightforward: if A is
true, so are A∨B and B ∨A, so if we have A somewhere in a derivation, we
should be able to add A∨B or B ∨A. In other words, the introduction rule
for ∨ is the following:

Disjunction Introduction (∨I)

P

� P ∨Q

or

P

� Q ∨P

Using this rule, we can show that ∼ (A ∨ B) `∼ A& ∼ B, which is on
half of one of DeMorgan’s Laws. Let’s first reflect on how to construct the
deduction. We want to derive a conjunction. We can expect the last step of
the deduction to be by &I, as both conjuncts must follow from the premises,
if their conjunction does. So the first part of the strategy is for deriving
∼ A$ ∼ B from ∼ (A ∨ B) is to derive both ∼ A and ∼ B as a preparation
for applying &I. Furthermore, ∼ A and ∼ B are the negations of ∼ A and
∼ B, resp., and we can expect these to be derivable by ∼I, as, if ∼ A follows
from ∼ (A∨B), assuming A must lead to a contradiction. More specifically,
A ∨ B is then derivable, which contradicts ∼ (A ∨ B). Similarly for B. Im-
plementing this strategy gives the following deduction:
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1 ∼ (A ∨B) Assumption

2 A Assumption

3 A ∨B 2 ∨I

4 ∼ (A ∨B) 1 R

5 ∼ A 2–4 ∼I

6 B Assumption

7 A ∨B 6 ∨I

8 ∼ (A ∨B) 1 R

9 ∼ B 6–8 ∼I

10 ∼ A& ∼ B 5, 9 &I

Here is another example: ∼ (A&B) `∼ A∨ ∼ B. Let’s again think about a
strategy for construction the deduction. This time, we cannot expect the last
step of the derivation to be by an introduction rule of the main connective of
its conclusion, as neither ∼ A nor ∼ B should follow from ∼ (A&B) alone.
Reflection on the form of the inference rules available in SD shows that the
only rule we can reasonably expect to end the deduction is ∼E.6 Hence we
assume, for reductio ad absurdum, ∼ (∼ A& ∼ B) and attempt to derive a
contradiction as a preparation for applying ∼E. How are we going to get a
contradiction? Well, neither assuming A nor assuming B on their own will
suffice, because we neither have ∼ A nor ∼ B, nor do A and B alone lend
themselves to deriving sentences contradiction ∼ (A&B) or ∼ (∼ A∨ ∼ B),
as inspection of the rules of SD shows. Howevere, if we assume both of them,
clearly we can derive a sentence contradicting ∼ (A&B), i.e. A&B. This
then allows us to reduce one of these two assumptions, say B, to absurdity, so
that we can apply ∼I. This in turn allows us to derive a sentence contradict-
ing ∼ (∼ A∨ ∼ B), i.e. ∼ A∨ ∼ B, which allows us to reduce the auxiliary
assumption A to absurdity, and again we can apply ∼I, this time with the
conclusion ∼ A. And this once more allows us to derive a sentence contra-
dicting ∼ (∼ A∨ ∼ B), namely, as before, ∼ A∨ ∼ B. And now we have

6Of course there can be other deductions not ending with this rule, but these won’t be
very straightforward ones.
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almost derived the desired conclusion, because closed off the subdeductions
beginning with the auxiliary assumptions A and B, and what is left is the
subdeduction beginning with the auxiliary assumption ∼ (∼ A∨ ∼ B). The
latter has now also has been reduced to absurdity and hence we can apply
∼E, to derive the conclusion ∼ A∨ ∼ B. In other words, the derivation is
the following:

1 ∼ (A&B) Assumption

2 ∼ (∼ A∨ ∼ B) Assumption

3 A Assumption

4 B Assumption

5 A&B 3, 4 &I

6 ∼ (A&B) 1 R

7 ∼ B 4–6 ∼I

8 ∼ A∨ ∼ B 7 ∨I

9 ∼ (∼ A∨ ∼ B) 2 R

10 ∼ A 3–9 ∼I

11 ∼ A∨ ∼ B 10 ∨I

12 ∼ (∼ A∨ ∼ B) 2 R

13 ∼ A∨ ∼ B 2–12 ∼E

This is one half of another one of DeMorgan’s Laws.
What about the elimination rule for disjunction? Suppose you know that

A ∨ B is true. Assume you can show that from A a sentence C follows, and
also that the same sentence follows from B. Then C must be true, because
either A is true or B is true: whatever is the case, C follows from each one.
Hence we use the following rule as the elimination rule for ∨:

Disjunction Elimination (∨E)
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P ∨Q

P

R

Q

R

� R

In other words, if you have a sentence of the form P ∨Q somewhere on the
derivation, and now you make the auxiliary assumption P and show that from
it a sentence R follows and you also show that the same sentence follows from
the auxiliary assumption Q, then you can close off both subderivations and
infer R, as then R follows from P∨Q alone. This rule is often called proof by
cases : if you have derived P∨Q, you know that either of two cases must hold,
namely either P or Q, although you may not know which; you then consider
each case separately to see whether in each case something else follows; if
that is the case, you know it must be true, because your considerations have
exhausted all cases and each case entails the same sentence.

We can use disjunction elimination to prove the other halves of DeMor-
gan’s Laws. First, ∼ A∨ ∼ B `∼ (A&B). The strategy for constructing
the derivation is the following. The premise is a disjunction. So we can
expect we have to use disjunction elimination, because there is no other way
in which we could use the premise to derive the conclusion (we can’t, for
instance, expect to use it as part of a reductio ad absurdum, as there is no
straightforward way of deriving the negation of the premise). I.e. we need
two subdeductions beginning with auxiliary assumptions ∼ A and ∼ B, re-
spectively. The conclusion is the negation of the conjunction A&B. Now if
in each subdeduction we begin a new subdeduction with A&B as the auxil-
iary assumption, we can easily derive sentences contradicting ∼ A and ∼ B
respectively, i.e. A and B, by conjunction elimination, which then in turn
allows us to close off the subdeductions beginning with A&B. The result is
that the two subdeductions we need as a preparation for disjunction elimi-
nation, the one beginning with ∼ A and the other one with ∼ B, each end
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with an application of negation introduction, deriving the formula ∼ (A&B).
Hence the conditions for applying ∨E are fulfilled and we can close the sub-
deductions off. The derivation then looks like this:

1 ∼ A∨ ∼ B Assumption

2 ∼ A Assumption

3 A&B Assumption

4 A 3 &E

5 ∼ A 2 R

6 ∼ (A&B) 3–5 ∼I

7 ∼ B Assumption

8 A&B Assumption

9 B 8 & E

10 ∼ B 7 R

11 ∼ (A&B) 8–10 ∼I

12 ∼ (A&B) 1, 2–6, 7–11 ∨E

Next comes the derivation showing that ∼ A& ∼ B `∼ (A ∨ B). This is
going to be somewhat more complicated than the deductions we already had.
We need to derive the negation of a disjunction. We can expect the last step
to be by negation introduction, i.e. after assuming the primary assumption
∼ A& ∼ B we start a subdeduction beginning with the auxiliary assumption
A∨B. We now need to derive a contradiction in this subdeduction. We now
have a conjunction and a disjunction as premises to work with. Notice that
the conjunction conjoins the negations of the sentences that the disjunction
disjoins. Hence contradictions are forthcoming, if in the next steps we begin
new subdeductions with A and B as auxiliary assumptions, as preparations
for applying ∨E. The aim would be to derive, from each, A and B, a sentence
of the form P& ∼ P,7 then to apply ∨E to close off the two subdeductions,

7You may have noticed that I have used the word ‘contradiction’ ambiguously since the
last lecture. The term ‘contradiction’ was introduced as a shorter way of characterising a
sentence is truth-functionally false. Now, in discussing the proof-theory of SL, I have used
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and then to apply &E to this contradiction twice, to derive P and ∼P on
their own, which then allows us to apply ∼E to close off the subdeduction
beginning with A ∨ B, to derive the desired conclusion ∼ (A ∨ B). The
problem is that in the two subdeductions beginning with A and B, we can so
far only derive different contradictions, i.e. in the one beginning with A we
get a contradiction by applying &E to ∼ A& ∼ B, deriving ∼ A and then
applying &I, and in the other one we can get a contradiction by deriving
∼ B and proceeding in the same fashion. But we need to derive the same
contradiction in both subdeductions. To see how this can be done we need
to digress a little. Suppose you have an inconsistent set of premises, e.g. A
and ∼ A. We said that the definitions of logical validity or truth-functional
validity entail that a inconsistent sets entail everything. We should expect
something similar to be the case in proof-theory, and we can indeed show
that there is a deduction from a contradiction as assumptions to any sen-
tence whatsoever as conclusion:

1 A Assumption

2 ∼ A Assumption

3 ∼ D Assumption

4 A 1 R

5 ∼ A 2 R

6 D 3–5 ∼I

Clearly, nothing in this deduction hangs on the shapes of A and D. This
observation helps the strategy for proving ∼ A& ∼ B `∼ (A ∨ B). For,
instead of D we could use an arbitrary contradiction, say C& ∼ C, and then
derive this contradiction in the two subdeductions beginning with A and B,
respectively. This, then, to the same contradiction having been derived from

it one the one hand to characterise that which is needs to be derived for the conditions of
applications of ∼I and ∼I to be given, i.e. two sentences, one of which is of the form P
and the other of the form ∼ P. Contradictions, then, are the ‘absurdities’ referred when
we called these rules versions of reductio ad absurdum. One the other hand, I have used
the term to name sentences of the form P& ∼ P. This ambiguity is harmless, as we could
formulate the negation rules in such a way that, instead requiring a contradiction of the
first kind, they require one of the second kind.
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both A and B, and so we can apply ∨E and finally, as this contradiction is
also the conclusion of the application of this rule, apply negation introduc-
tion and close off the subdeduction beginning with A ∨ B, which completes
the derivation. In symbols, it looks like this:

1 ∼ A& ∼ B Assumption

2 A ∨B Assumption

3 A Assumption

4 ∼ (C& ∼ C) Assumption

5 A 3 R

6 ∼ A 1 &E

7 C& ∼ C 4–6 ∼E

8 B Assumption

9 ∼ (C& ∼ C) Assumption

10 B 8 R

11 ∼ B 1 &E

12 C& ∼ C 9–11 ∼E

13 C& ∼ C 2, 3–7, 8–12 ∨E

14 C 13 &E

15 ∼ C 13 &E

16 ∼ (A ∨B) 2–15 ∼I

There is slightly shorter deduction, which also makes use of some interesting
possibilities available in construction deductions, namely that assuming A
and then repeating it gives a deduction of A from A, which is required by
an application of ∨E. Another feature to notice is that so far, applications of
∨E have exhibited a certain neat symmetry in the subdeductions begun with
each disjunct. This need not always be the case, as the next deduction shows:
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1 ∼ A& ∼ B Assumption

2 A ∨B Assumption

3 A Assumption

4 A 3 R

5 B Assumption

6 ∼ A Assumption

7 B 5 R

8 ∼ B 1 &E

9 A 6–8 ∼E

10 A 2, 3–4, 5–9 ∨E

11 ∼ A 1 &E

12 ∼ (A ∨B) 2–11 ∼I

The second deduction may be slightly easier, but the first one introduces a
feature of SD that may not be altogether too obvious: when assuming formu-
las as auxiliary assumptions, we are not limited to assuming only such ones
as somehow make use of the atomic components of the primary premises: we
can assume any sentence we like, even completely random and disconnected
ones. The important point is that assuming the sentences leads to the desired
result and that the subdeductions begun with them as auxiliary assumptions
are closed off in the course of the deduction.

These deductions are already quite complicated. It lies in the nature of
systems of natural deduction that, if they only have very few rules, some
deductions are rather clumsy and long. That’s why the book introduces
another system, SD+, which has some more rules of inference, which serve
as ‘short cuts’ and make deductions a rather easier business.

Now that we have introduced the rules of the system SD, we need some
definitions of terminology that allows us to talk about derivations in SD.
First, here is a notion that we could have introduced earlier:

DEFINITION. A sentence P occurring in a deduction is in the scope of as-
sumptions Q1 . . .Qn if and only if the scope lines immediately to the left of
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each assumption (i.e. the ones lines beginning with these assumptions) are
also to the left of P.

Scope lines are the vertical lines to the left of formulas in deductions, begin-
ning either with the primary assumptions or auxiliary assumptions. We use
this notion to define more precisely what being derivable in SD means:

DEFINITION. A sentence P is derivable in SD from a set of sentences Γ of
SL if and only if there is a derivation in SD in which all the primary assump-
tions are members of Γ and P occurs in the scope only of those assumptions.

We have already introduced a notation for this, which is Γ ` P. Notice that
it is only required that some members of Γ occur as the primary assumptions
of the derivation. Derivations always only have finitely many primary (and
auxiliary) assumptions, because derivations are things that can be written
down: infinitely many things cannot be written down. Nonetheless, a sen-
tence P may be said to be derivable from an infinitely large set Γ, if a finite
subset ∆ of Γ suffices to derive P.

The last notion can be used to give a definition of validity somewhat
different from the semantic definition using the notion of truth-value assign-
ments. Notice that when we discussed the semantics of SL the primitive
notion in terms of which all others were defined was the notion of a truth-
value assignment. Now the primitive notion is that of a deduction.

DEFINITION. An argument of SL is valid in SD if and only of the conclu-
sion of the argument is derivable in SD from the set consisting of the premises.

DEFINITION. An argument of SL is invalid in SD if and only if it is not
valid in SD.

We now need a notion that corresponds to that of truth-functional truth. It
is the following:

DEFINITION. A sentence P of SL is a theorem in SD if and only if P is
derivable in SD from the empty set.

We already had an example of a logical truth in the first lecture on deriva-
tions. Here it is again:
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1 A Assumption

2 B Assumption

3 A 1 R

4 B ⊃ A 2–3 ⊃I

5 A ⊃ (B ⊃ A) 1–4 ⊃I

A ⊃ (B ⊃ A) is in the scope of no primary assumptions, therefore it has
been derived ‘from the empty set’ of primary assumptions. We write this as
` A ⊃ (B ⊃ A).

Here is another example of a theorem:

` (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨B) ⊃ C))

1 A ⊃ C Assumption

2 B ⊃ C Assumption

3 A ∨B Assumption

4 A Assumption

5 C 1, 4 ⊃E

6 B Assumption

7 C 2, 6 ⊃E

8 C 3, 4–5, 6–7 ∨E

9 (A ∨B) ⊃ C 3–8 ⊃I

10 (B ⊃ C) ⊃ ((A ∨B) ⊃ C) 2–9 ⊃I

11 (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨B) ⊃ C)) 1–10 ∨I

Here is a less exciting definition, corresponding to truth-functional equiva-
lence:

DEFINITION. Sentences P and Q of SL are equivalent in SD if and only if
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Q is derivable in SD from {P} and P is derivable in SD from {Q}.

Hence the deductions of DeMorgan’s Laws have shown that ∼ (A ∨ B) and
∼ A& ∼ B are equivalent in SD, and so are ∼ A∨ ∼ B and ∼ (A&B).

Finally, there is the notion of consistency defined in terms of derivations
in the system of natural deduction:

DEFINITION. A set of sentences of SL is inconsistent in SD if and only if
both a sentence P of SL and its negation ∼ P are derivable in SD from Γ.

DEFINITION. A set of sentences of SL is consistent in SD if and only if it
is not inconsistent in SD.

As already noted, an interesting fact about inconsistent sets is that every
sentence is derivable from them.
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The formal language SL is a somewhat poor language. It does not enable
us to express things we would express in ordinary English with sentences
like ‘Every man is mortal.’, ‘Something is rotten in the state of Denmark.’,
‘Nobody loves you when you’re down and out.’. A consequence of this that
the language SL is incapable of expressing such paradigms of reasoning as
for instance the following two syllogisms:

(1) No men are islands.
(2) All men are mortal.
(3) Therefore, some mortals are not islands.

(4) No islands are man.
(5) All men are animals.
(6) Therefore, some animals are not islands.

We obviously need to do something about that, not the least in order to be
in a position to test whether the two examples just given are valid or invalid
arguments.8

Closely connected is another shortcoming of the language of SL. Consider

8The scholastics would have called the forms of these syllogisms ‘Felapton’ and ‘Fesapo’,
respectively, and would indeed have considered them to be valid. Later, when we define a
concept of validity appropriate to classify syllogisms, it will turn out that they are valid if
(and only if) it is assumed that there are men in the first case and animals in the second:
if a premise is added to the effect that there are men/animals, the argument is valid; if no
such premise is added, the argument is invalid.
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the following sentences:

(7) John loves Mary.
(8) John is fat.
(9) Mary loves Lucy.

In SL, we would formalise them with three different sentence letters, for in-
stance L, F and P . But obviously, this glosses over some reasonably interest-
ing facts about these three sentences: L, F and P stand, as atomic sentences,
in no interesting relation whatsoever to each other. However, there are some
interesting relations between the English sentences (7), (8) and (9): in (7)
and (9) the words ‘loves’ and ‘Mary’ occur, in (7) and (8) ‘John’ occurs.

Why such occurrences of common phrases in different sentences is of in-
terest becomes immediate when we consider the following two sentences:

(10) Mary is taller than John.
(11) John is taller than Lucy.

From this it follows that (13) Mary is taller than Lucy, because (12) whoever
is taller than someone else, who in turn is taller than a third person, is also
taller than the third. We should be able to formalise this inference, but this
is not possible in SL. If we symbolise (10) as M , (11) as N and ‘Mary is
taller than Lucy’ as O, the best we can do in SL is to express that if Mary is
taller than John, and John is taller than Lucy, then Mary is taller than Lucy,
which would be: (*) (M&N) ⊃ O. But this covers only the particular case,
where Mary is taller than John, John is taller than Lucy, and therefore Mary
is taller than Lucy. Contrary to that, the property of tallness that makes
this inference possible is perfectly general. For instance, if Lucy is taller than
Paul, and Paul is taller than Peter, then Lucy is taller than Peter. SL would
force us to formalise this using three different sentence letters, e.g. A, B and
C, and then we would also need to add a premise corresponding to (*), i.e.
(A&B) ⊃ C, if we wish to formalise the inference as a valid one. And again,
we have not succeeded in expressing what is common to M , N , O, A, B and
C, namely that they relate people to each other in order of tallness, and in
particular, we have no means to infer, from the sentences of SL, that Mary
is taller than all of them. In short, what is missing in SL is not only that
we cannot express what different atomic sentences have in common – what
common subsentential components they have – but also that we haven’t got
a way of expressing generality, as in ‘whoever is taller than someone else,
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who in turn is taller than a third person, is taller than the third’.
A formal language fulfilling these two desiderata – being able to express

what is common to different atomic sentences and being able to express
generality – will also allow us to formalise syllogisms and, indeed, a vast
number of arguments and sentences not of the traditional syllogistic form as
for instance the argument about Mary’s tallness in the last paragraph. To
set up a language in which this is possible is the topic of this lecture: it is
the language PL of predicate logic.

The first desideratum is fulfilled if we introduce expressions into the
formal language doing the work of names and predicates in ordinary lan-
guage. We use lower case letters a, b, c, . . . (possibly with subscripts as in
a1, a2, a3 . . . b1, b2, b3 . . . c1, c2, c3 . . .) to abbreviate names of English; we call
these symbols also names, or, more technically, individual constants. Names
or individual constants stand for objects. Predicates are expressions forming
sentences out of names. They come in different kinds. For instance, there
are one-place predicates. These are expressions that form a sentence out of
one name. For instance, in ordinary English ‘is fat’ is a one-place predicate.
If attached to the name ‘Jones’, it forms the sentences ‘Jones is fat’. Next,
there are two-place predicates. For instance, in ordinary English ‘loves’ is a
two-place predicate. If put between the names ‘John’ and ‘Mary’ (in this
order) it forms the sentences ‘John loves Mary’. Then there are three-place
predicates. They form sentences out of three names, as, for instance, ‘is be-
tween ... and ...’ does out of ‘Paris’, ‘London’ and ‘Berlin’ (in this order):
the result is the sentence ‘Paris is between London and Berlin’. And so on.
In the formal language, we use upper case letters F , G, H etc. to stand for
predicates, and add primes ′ to indicate how many places they have: H ′, G′,
F ′ for one-place predicates, H ′′, F ′′, G′′ for two-place predicates, and so on
for n-place predicates F ′′′..., G′′′..., H ′′′..., where H, G and F are followed by
n primes. In practice, when it is clear from the context how many places a
predicate has, we omit the primes: they only serve a technical purpose in
the definition of a formula of PL, but are not needed if we know what the
interpretation of a predicate letter is. As for sentence letters of SL, we can
use subscripts to distinguish predicate letters of PL.

To construct sentences consisting of predicates and names in the formal
language we deviate somewhat from ordinary English, where names either
come before the predicate (if it’s a one-place one) or to the left and right (if
it’s a two-place one) or at various other places (if it’s a three-or-more-place
one). In PL, we write individual constants always after predicate letters.
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For instance, we can now formalise some of the sentences we have discussed
earlier: let F stand for ‘is fat’, L for ‘loves’ and T for ‘is taller than’; fur-
thermore, let l stand for ‘Lucy’, m for ‘Mary’, j for ‘John’; then (7) becomes
Ljm, (8) Fj, (9) Lml, (10) Tmj and (11) becomes Tjl.

Two things are worth noting. First, ‘Lucy loves Mary’ of course becomes
Llm and ‘John is taller than Mary’ is Tjm. This means that we need to
pay attention to the order in which names occur in sentences. Secondly, the
example of the three-place predicate ‘is between ... and ...’ indicated that
even in English sometimes we need to mark where names are supposed to
go if we are to form a sentence out of the predicate. In a sense, predicates
have a number of ‘gaps’ that are filled by names in forming sentences, and if
we have a predicate with more than one gap, we also need to say something
about which name fills which gap. Both questions, where and how many gaps
a predicate has and which name goes into which gap when constructing a
sentence, is solved by the use of variables. To mark the gaps in a predicate, we
use w, x, y, z, with subscripts where necessary, as in ‘x is fat’, ‘x loves y’, ‘x is
between y and z’. Sentences are then formed by replacing the variables with
names, and instead of referring to the order of the names, we can indicate
which variable is replaced by which name and in that way ensure that we are
actually forming the sentences we intended to form, i.e. ‘John loves Mary.’
rather than ‘Mary loves John.’, and ‘Paris is between London and Berlin.’
rather than, e.g., ‘London is between Berlin and Paris.’. Correspondingly, in
PL we abbreviate predicates of ordinary English by expressions of the kind
Fx, Hxy, Gxyz and so on.

I shall use ‘predicate’ ambiguously to stand for expressions like F , G, H
on their own (possibly with primes or subscripts), but also for these followed
by the appropriate number of variables. If disambiguation is needed, I shall
call G, F and H predicate letters. Expressions of the kind F ′x, H ′′xy, G′′′xyz
are also called atomic formulas of PL, where this term also covers expressions
resulting from replacing one or more variable in these expressions by names.
If all variables in an atomic formula are replaced by names, we get an atomic
sentence. The latter are either true or false, depending on whether objects
named by the names have the right properties or stand in the right relation
to each other.

To fulfil the second desideratum, we introduce expressions expressing gen-
erality into the language PL, i.e. expressions which are roughly the formal
analogues for ‘some’ and ‘all’ and the like in English. I mentioned in the
third lecture that ‘some’ and ‘all’ are best understood as always occurring
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in the contexts ‘some ... are ...’ and ‘all ... are ...’, i.e. they are expressions
forming sentences out of two predicates, for instance ‘some men are mortal’
and ‘all men are mortal’ from ‘men’ and ‘mortal’. ‘Some’ and ‘all’ are of
course also used in other contexts, and there are other expressions which can
do the same job as ‘some’ and ‘all’. For instance, ‘every’ is often used instead
of ‘all’, as in ‘Every man is mortal’, and it is also used in contexts where only
one predicate is used, as in, e.g., ‘Everything is miserable.’. Similarly, instead
of ‘some’ we can use, for instance, ‘there is’ as in ‘There is beer in the fridge’,
and we can use this phrase too for sentences formed out of one predicate
instead of two, as in, e.g., ‘Something is wrong here’. And most obviously,
no one would demand ‘some’ to occur only in the contexts ‘some ... are ...’
as of course ‘are’ can often be replaced by ‘is’ as in ‘Some man is an island’.
In setting up our formal language of predicate logic, we shall leave behind
these intricacies of English grammar. We shall introduce two formal expres-
sions, ∀ and ∃, called the universal quantifier and the existential quantifier,
respectively, which we will let do the work of expressions of ordinary English
like ‘every’, ‘all’, ‘some’, ‘there is’ and whatever else there might be—as far
as possible, that is.

Quantifiers are expressions that turn predicates into sentences.9 But be-
fore we describe the grammar of quantifiers of PL, let’s have a closer look at
how variables work. An expression like ‘x loves y’ is almost like a sentence.
In a sense it is halfway between a predicate and a sentence: taken on its own
it asserts nothing, because of the ‘gap’ represented by the variables, but if we
used x and y as names of objects and declared them to stand, for instance,
for Lucy and Mary, then ‘x loves y would make an assertion which is either
true or false. Something similar is true for pronouns and demonstratives in
English. For instance, if it is specified which person ‘she’ refers to something
can be asserted by ‘She is pretty.’, namely that the person refers to has this
property, but if it is not specified who ‘she’ refers to, the sentence is as gappy
as a mere predicate, as nothing has been asserted to have the property. Sim-
ilarly, ‘This is a nightmare.’ says something only if some object is referred to
by ‘this’, but if that is not the case, nothing has been asserted. Now notice
that a sentence like ‘All men are mortal’ can be rephrased so that pronouns
occur in it, for instance ‘Take anything you like: if it is a man, then it is
mortal’ or ‘It is true of anything whatsoever that if it is a man, then it is

9Which of course means that predicates are just as much expressions turning quantifiers
into sentences as they are expressions turning names into sentences.
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mortal’. In PL, a variable like x also works pretty much in the same way as
‘it’ does in these sentences.10 Replacing the pronoun ‘it’ by the variable x
in ‘if it is a man, then it is mortal’ gives a construction of the kind I have
called “halfway between a sentence and a predicate”: ‘if x is a man, then x
is mortal’. Using Mx to stand for ‘x is a man’ and Dx to stand for ‘x is
mortal’, we can formalise it as Mx ⊃ Dx.

In formalising the sentences occurring in the syllogisms with which the
lecture began, we want to say that this complex predicate expressed by Mx ⊃
Dx – being mortal if a man – is true of everything, i.e. whatever you might
chose to refer to by x, Mx ⊃ Dx is true, i.e., whatever x might be, Mx ⊃ Dx,
or for any x, Mx ⊃ Dx. We use the universal quantifier followed by the
variable x, ∀x to stand for ‘whatever x might be’ or ‘for any x‘ or ‘every x
is such that’. Then the whole thing becomes: ∀x(Mx ⊃ Dx). This, then, is
the formalisation of ‘All men are mortal’ in PL.

Now consider ‘Some mortals are not islands’. First, we can reformulate
this as ‘There is something such that it is a man and it is not an island.’ or
‘At least one thing is such that it is a man and not an island.’. Replacing
pronouns by variables in ‘it is a man and it is not an island.’, we get ‘x is a
man and x is not an island.’. Using Ix to stand for ‘x is an island’, we can
formalise the latter as Mx& ∼ Ix. The whole sentence ‘Some mortals are
not islands.’ can then be rephrased as meaning something like this: ‘There
is an x such that x is mortal and x is not an island.’. We use the existential
quantifier followed by x to stand for ‘There is some x is such that’, so that
the whole sentence is formalised as ∃x(Mx& ∼ Ix).

In formalising sentences of English in the language PL, we record which
predicates and names of PL are used to stand for which predicates and names
of English in a symbolisation key or an interpretation, as we’ve called it in
the lectures on sentential logic. A symbolisation key will also specify what
is called a universe of discourse: it’s the collection of things we are talking
about in the moment, for instance, physical objects: the universe of discourse
contains the objects the variables of PL (or pronouns of English) stand for.
As examples, let’s formalise the syllogisms from the beginning of the lecture.

Symbolisation Key:

10We could also use variables like demonstratives, but this is somewhat non-standard.
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UD: Physical objects
Mx: x is a man
Dx: x is mortal
Ix: x is an island
Ax: x is an animal

First syllogism:

(1’) ∼ ∃x(Mx&Ix)
(2’) ∀x(Mx ⊃ Dx)
(3’) ∃x(Mx& ∼ Ix)

Second syllogism:

(4’) ∼ ∃x(Ix&Mx)
(5’) ∀x(Mx ⊃ Ax)
(6’) ∃x(Ax& ∼ Ix)

As another example, let’s formalise the argument about Mary being taller
than other people. First, here it is again in English:

(10) Mary is taller than John.
(11) John is taller than Lucy.
(12) Whoever is taller than someone who is taller than a third person,

is taller than this third person.
(13) Mary is taller than Lucy.

It is a remarkable fact about the Aristotelian logic that was predominant
until the late nineteenth century that it was unable to analyse this rather
straightforward argument in logical terms. The argument does not have the
form of a syllogism, and everything not of this form was outside the scope of
Aristotelean formal logic. In PL, we can easily formalise the argument. Here
is the interpretation of symbols in terms of English:

Symbolisation Key:
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UD: Persons
Txy: x is taller than y

m: Mary
j: John
l: Lucy

We can reformulate the third premise using variables, thus: ‘for any x, any
y, any z, if x is taller than y, then, if y is taller than z, x is taller than z’.
And now the argument is formalised thus:

(10’) Tmj
(11’) Tjl
(12’) ∀x∀y∀x((Txy&Tyz) ⊃ Txz)
(13’) Tml

As was done for the case of SL, we can give a precise, inductive definition
of what counts as a formula of the language PL—the formal syntax of PL.
First, we need to say what the vocabulary of PL is:

Sentence Letters: A, A1, A2 . . . B, B1, B2 . . . Z, Z1, Z2

Predicate Letters: A′, A′
1, A′

2 . . . A′′, A′′
1, A′′

2 . . . A′′′, A′′′
1 , A′′′

2

. . . B′, B′
1, B′

2 . . . B′′, B′′
1 , B′′

2 . . . B′′′, B′′′
1 ,

B′′′
2 . . . Z ′, Z ′

1, Z ′
2 . . .Z ′′, Z ′′

1 , Z ′′
2 , Z ′′′, Z ′′′

1 ,
Z ′′′

2

Individual Terms:
a) Individual Constants: a, b, c . . ., a1, a2 . . ., b1, b2 . . ., c1, c2 . . .
b) Individual Variables: w, x, y, z, w1, x1, y1, z1, w2, x2, y2, z2 . . .

Connectives: ∼, &,∨,⊃,≡

Quantifier Symbols: ∀,∃

Punctuation Marks: (, )

Next, we to define most basis kinds of formulas of PL:
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DEFINITION. An atomic formula of PL is an expression of PL which is ei-
ther a sentence letter or an n-place predicate followed by n individual terms.

One more definition:

DEFINITION. An x-quantifier is a quantifier symbol followed by the vari-
able x.

Finally, this is the definition of ‘Formula of PL’:

1. Every atomic formula is a formula of PL.
2. If P is a formula of PL, so is ∼ P.
3. If P and Q are formulas of PL, so are (P&Q), (P ∨Q), (P ⊃ Q),

(P ≡ Q).
4. If P is a formula of PL that contains at least one occurrence of x

and no x-quantifier, then (∀x)P and (∃x)P are formulas of PL.
5. Nothing else is a formula of PL.
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Just as we defined notions to characterise sentences of SL and their parts
– i.e. sentential components and main connective –, we now need to define
corresponding notions for formulas of PL. First, we define a notion somewhat
broader than ‘truth-functional connective’:

DEFINITION. A logical operator is an expression of PL which is either a
quantifier or a connective.

Next comes the definition of concepts relating to formulas and their parts,
namely immediate subformula, subformula and main logical operator :

1. If P is an atomic formula of PL, then P contains no logical operator,
and hence no main logical operator, and P is the only subformula
of P.

2. If P is a formula of PL of the form ∼ Q, then the tilde ∼ preceding
Q is the main operator of P, and Q is the immediate subformula
of P.

3. If P is a formula of PL the form (Q ∨ R), (Q&R), (Q ⊃ R) or
(Q ≡ R), then the connective between Q and R is the main logical
connective of P, and its immediate subformulas are Q and R.

4. If P is a formula of PL of the form ∀xQ or ∃xQ, then the quantifier
that occurs before Q is the main logical operator of P, and Q is
the immediate subformula of P.

5. If P is a formula of PL, then every subformula (immediate or not)
of a subformula of P is a subformula of P, and P is a subformula
of itself.
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Quantifiers range over fixed parts of formulas. Which one is captured by the
following definition, which makes use of the concepts just defined:

DEFINITION. The scope of a quantifier in a formula P of PL is the subfor-
mula Q of P of which that quantifier is the main logical operator.

Example: ∀x(Fx ⊃ ∃y(Gy&∀z(Hz ⊃ Rxyz)))

Quantifier Scope
∀x (Fx ⊃ ∃y(Gy&∀z(Hz ⊃ Rxyz)))

∃y (Gy&∀z(Hz ⊃ Rxyz))

∀z (Hz ⊃ Rxyz)

We also need some terminology to distinguish two kinds of variables:

DEFINITION. An occurrence of a variable x in a formula P of PL is bound
if it is within the scope of an x-quantifier.

DEFINITION. An occurrence of a variable x in a formula P of PL is free if
it is not bound.

Example: ∀xFxy: x is a bound variable, y is a free variable

If a formula contains open variables, it does not really say anything; as re-
marked in the last lecture, such a formula is a bit like ‘She is pretty’, where
we aren’t told who she is. Contrary to that, if a formula contains no free
variables, but all are bound, we always know what has been said, given we
know the interpretation of the predicates and names. In other words, we
always have a complete sentence:

DEFINITION. A formula P is a sentence of PL if and only if no occurrence
of a variable in P is free.

Examples: ∀x∃yFxy is a sentence. ∀xFxy is not.

Finally, one more definition. Suppose you know that every man is mortal.
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Then it follows that Socrates is mortal, if he is a man. We can express
this as saying that, if s stands for Socrates, and ∀x(Mx ⊃ Dx) formalises
‘All men are mortal’, then we get a true sentence by dropping the quantifier
and replacing the variable x of Mx ⊃ Dx by the name s, the result being
Ms ⊃ Ds. The resulting sentence a substitution instance of the quantified
sentence. In the following definition, Q(a/x) means that x is replaced by a
in Q. Notice that the concept is defined only for sentences, not formulas in
general.

DEFINITION. If P is a sentence of PL of the form ∀xQ or ∃xQ, and a
is an individual constant, then Q(a/x) is a substitution instance of P. The
constant a is the instantiating constant.

Example:

Sentence Substitution Instance Instantiating Constant
∀x∀yFxy ∀yFay a
∀yFay Fab b
∀x∀z∃yBxyz ∀z∃yBayz a

For the rest of the lecture, we’ll go through some examples of formalisations
of sentences of English into PL. We’ve done some syllogisms already last
lecture, so now we’ll do some examples not of the syllogistic form. Consider
the following pair of sentences:

1. Everyone loves someone.
2. Someone is loved by everyone.

The pair seems to exhibit the same grammatical phenomenon of turning the
active into the passive voice that also characterises the following two sen-
tences

3. Peter loves Mary.
4. Mary is loved by Peter.

3. and 4. say exactly the same thing. But 1. and 2. don’t.11 Here is another

11It is sometimes claimed – in logic books and elsewhere – that some people commit
what is called the ‘quantifier-shift fallacy’, which is the fallacy that assumes that 1. and 2.
are logically equivalent. It can be rather difficult to see how anyone could ever commit this
fallacy, if both sentences are juxtaposed in the way they are here. What we can conclude,

Nils Kurbis: Introduction to Logic 98



Lecture 13 Basic Syntactic Notions of PL

pair of sentences:

5. Something causes everything.
6. Everything is caused by something.

If 1. and 2. did say the same thing, then 5. and 6. would also say the
same thing, as they, too, exhibit the structure exhibited by 3. and 4., where
the active is turned into the passive voice. But 5. certainly says something
different from what 6. says, because 6. may well be true while 5. may well be
false. 5. is true just in case there is at least one event which caused all other
events, which of course entails that this event causes itself, as ‘everything’
means ‘everything’ rather than ‘everything else’. It is a very strong claim
that something like that exists, and indeed, if nothing can cause itself, it
must be false. It is much easier to imagine 6. to be true; indeed, it is a very
plausible thing to say, if every event can be traced back to its causes. Hence
we cannot conclude from the fact that 3. and 4. say the same thing and
that 1. and 2., and 3. and 4., share the same ‘surface grammar’, that the
latter pairs also say the same thing. This difference is reflected in the formal
language by a difference in the order in which quantifiers occur.

1. and 2. say something like the following:

1.’ For every x, there is some y such that x loves y.
2.’ There is some y such that for every x, x loves y.

5. and 6. can be rephrased as:

5.’ There is some x such that for every y, x causes y.
6.’ For every y, there is an x such that x causes y.

Using Lxy to stand for ‘x loves y’ and Cxy for ‘x causes y’, formalisation
yields:

however, is that, as 3. and 4. are logically equivalent, 1. and 2. would also be logically
equivalent if quantifiers worked like names do: ‘everyone’ names everyone, and ‘someone’
names someone, but noone in particular (an individuum vagum, as we might call it in
scholastic mode). 4. and 5. say the same thing, once in the active once in the passive
voice, and if one thought that quantifiers are names (their surface grammar is, after all,
very similar to that of names), one should conclude that 1. and 2. say the same thing,
once in the passive, once in the active voice. But they don’t. Hence quantifiers are not
names.
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1.” ∀x∃yLxy
2.” ∃y∀xLxy
5.” ∃x∀yCxy
6.” ∀y∃xCxy

In contrast, letting p stand for ‘Peter’ and m for ‘Mary’, there is no difference
in the formalisations of 3. and 4.: both are formalised as Lpm.

Notice that the order in which the variables are bound by the quantifiers
is also important. It makes a difference whether we first bind x by the
universal quantifier and then y by the existential quantifiers, or first y by
the existential and then x by the universal quantifier. If, however, the two
variables are bound by the same quantifier, there is no difference in meaning;
e.g. ∀x∀yCxy and ∀y∀xCxy say the same thing.

Given a two-place predicate, there are six different formulas we can build
from it and the quantifiers. The following table lists them, with English
translations:

1. ∀x∀yCxy Everything causes everything.
2. ∀x∃yCxy Everything causes something.
3. ∀y∃xCxy Everything is caused by something.
4. ∃y∀xCxy Something is caused by everything.
5. ∃x∀yCxy Something causes everything.
6. ∃x∃yCxy Something causes something.

Notice how binding the second variable of Cxy first gives sentences best
translated into the passive voice. Instead of ∀y∃xCxy and ∃y∀xCxy we
could also change the order of the variables following C in 3. and 4. and
write ∀x∃yCyx and ∃x∀yCyx. Thus the passive voice can either be formed
by changing the order of the variables following directly after the quantifier
symbols, or alternatively changing the order of the variables following the
two-place relation.
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Translating English into symbols is often more or less a matter of doing it
word by word: words of English are replaced by expressions of PL, so that
the structure of English sentences is often very similar to the structure of
sentences of PL. But it is not always the case that we can just translate a
word of English corresponding to a logical operator of PL as that symbol.
Consider, for instance, ‘Polar bears and grizzly bears are dangerous’. We
cannot, letting Px stand for ‘x is a polar bear’, Gx for ‘x is a grizzly bear’
and Dx for ‘x is dangerous’, formalise this as ∀x((Gx&Px) ⊃ Dx). For then
we have said that things which are both polar bears and grizzly bears are
dangerous. Obviously, this is not what is meant. Rather, what is meant
is ∀x((Gx ∨ Px) ⊃ Dx), i.e. anything which is either a polar bear or a
grizzly bear is dangerous. Or consider ‘Someone who fails logic deserves
pity.’. Letting Fx stand for ‘x fails logic’ and Dx for ‘x deserves pity’,
neither of the following two formalisations will do. A first attempt might
be: ∃x(Fx ⊃ Dx). But this is too weak: it merely asserts that at least one
person has the property of deserving-pity-if-failing-logic. A second attempt
might be: ∃x(Fx&Dx). This is too strong: it asserts that there actually is
someone who fails logic and deserves pity. What is meant by ‘Someone who
fails logic deserves pity’ is of course that whoever fails logic deserves pity. So
translating it into PL will not make use of the existential quantifier at all,
but rather of the universal one, i.e. ∀x(Fx ⊃ Dx).

It is instructive to take formulas of PL and consider under which condi-
tions they are true. Let’s use the following interpretation:

UD: physical things
Ax x is an animal
Ux x is a unicorn
Ex x is equine
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Consider the following sentences:

(1) ∀x(Ux ⊃ (Ex&Ax))
(2) ∀x(Ux ⊃∼ (Ex&Ax))
(3) ∃xUx&∃yUy
(4) ∃xUx& ∼ ∃yUy

(1) can be translated into English as ‘Whatever is a unicorn is an equine
animal’, or ‘Every unicorn is an equine animal’, or, more concisely, ‘Unicorns
are equine animals’. But is this sentences true? The use of expressions of
ordinary English corresponding to the universal quantifier like ‘every’, ‘every-
thing’, ‘everyone’, ‘whoever’, ‘whatever’ etc. often are used to say not only
that everything of one kind also has another property, but also suggest that
something exists which has both properties. For instance, if I assert that all
my children have the flu, then I am most certainly taken to have children.
If I have no children we’d say that I shouldn’t assert that all my children
have the flu. Thus ‘Unicorns are equine animals’ may be taken to imply
that there are unicorns, but as there aren’t, it should be false. However,
it nonetheless seems true that unicorns are equine animals, by considering
the kind of creature they are supposed to be, whether there are any or not.
So from that perspective, (1) should be true. Thus ordinary English seems
undecided when it comes to the question whether the translation of (1) into
it is true or false. In a sense, of course, this is an ambiguity. PL is different.
One reason for its existence is to provide a language in which to avoid incon-
sistency. Remember that a formula with the material conditional as main
connective is true if its antecedent is false. Hence, whatever you might chose
x to stand for, (Ux ⊃ (Ex&Ax)) is true of it, i.e. that thing is an-equine-
animal-if-a-unicorn—a rather clumsy property to have, but nonetheless one
that everything indeed has, as nothing is a unicorn. Thus PL decides that (1)
is true. But what about (2)? If there are no unicorns, again the antecedent
(Ux ⊃∼ (Ex&Ax)) is true of whatever x may stand for, and hence PL de-
cides that (2) is true, too. This may sound counterintuitive. But that feeling
is dispelled if we remember why according to PL both are true. The reason
is once more the material conditional, as with so many other counterintuitive
results that we encountered during these lectures. In PL, (1) and (2) are not
contradictories: they can both be true together.12

How to translate (3) into English? You might be tempted to say that it

12However, they cannot be both false together.
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means ‘There are two unicorns’: after all, what you are saying is that there is
an x which is a unicorn and a y which is also a unicorn, hence if both x and
y are unicorns, there must be at least two of them. Similarly, you might be
tempted to say that (4) means that there us only one unicorn, because one
half of it says that x is a unicorn, but the other half says that there is no y
which also is a unicorn. But this is a non sequitur. Suppose there is only one
unicorn. Now in that case ‘There is a unicorn’ is true. This is exactly what
∃xUx says, and so does ∃yUy. But then both conjuncts of (3) are true, and
consequently the conjunction of them must be true. Thus (3) in fact says
exactly the same as each of its conjuncts taken on its own. So let’s have a
look at (4). The first conjunct definitely says that there is a unicorn. And
the second conjunct denies this: it says that there is no unicorn. Hence (4)
is a contradiction. It can never be true. To conclude, in PL, the shape of
bound variables plays no role in a sentence over and above the structure it
gives to which variables are bound by which quantifiers in the sentence: two
sentences with exactly the same structure of bound variables, which differ
only in the shape of the variables, are equivalent.

How do we express that, for instance, there is exactly one unicorn, or that
there are at most or least two? So far, we cannot express this. But consider
how you would express such a sentence in a version of English closer to PL.
‘There is exactly one unicorn’ means something like this: ‘There is a unicorn,
and if you come across another one, it was the one you’ve already counted’.
Similarly, ‘There are at most two unicorns’ means something like ‘There is a
unicorn and possibly another one, but if you come a across a third one, it was
one you’ve already counted’. And ‘There are at least two unicorns’ means
‘There is a unicorn, and at least one other, different one’. Now of course
logic does not care an awful lot about what we can count and what we came
across, so this choice of words is somewhat uncongenial to PL. However,
what these considerations show is that to translate ‘at least’, ‘at most’, or
‘exactly’ followed by a number we need some way of expressing sameness and
difference in the language. To do so we introduce a new two-place predicate
to express sameness. Negating a sentence expressing sameness of two objects
we get one expressing difference.

Thus we extend the language of PL by adding the two-place predicate =
for identity. We’ll form a formula from it by writing terms to its left and
right, e.g. a = b. Notice that this is all we need to do. We need not change
any definitions about the formulas of the language. The definitions of atomic
formula, formula etc. can stay what they are. We’ll call the language PL
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extended by the symbol = PLE.
Let’s see how to express ‘There is exactly one unicorn’ in PLE. The ap-

proximation of the last but one paragraph can be improved on by excising the
phrases connected to counting and coming across, for instance thus: ‘There
is a unicorn, and whatever else is a unicorn is identical to this one’. In sym-
bols: ∃x(Ux&∀y(Uy ⊃ y = x)). This sentence can only be true if there is
exactly one unicorn, because if there were two, then the second conjunct of
the conjunction following the existential quantifier would require that it is
identical with x, as (Uy ⊃ y = x) is true of it as the y. Notice what the last
sentence says: if you chose arbitrarily an x and a y, then, if y is a unicorn,
x is the same as y. Suppose x is also a unicorn. Then there can be at most
one unicorn, if this sentence is true of all y and x: ∀x∀y((Ux&Uy) ⊃ y = x).
Notice that there may be no unicorn at all and this sentence still be true.

‘There are at most two unicorns’ then means something like this: ‘If there
are two things which are unicorns, then, if there is a third one, it is identical
to one of the two’. In symbols: ∀x∀y(Ux&Uy&∀z(Uz ⊃ (z = x ∨ z = y))).

‘There are at least two unicorns’ means something like ‘There are two
unicorns, and they both are different’, i.e. ∃x∃y((Ux&Uy)& ∼ x = y).

‘There are exactly two unicorns’ says that there are at least two and at
most two unicorns: ∃x∃y(((Ux&Uy)& ∼ x = y)&∀z(Uz ⊃ (z = x∨z = y))).

Let’s sum this up in a table:

(i) There is at least one F .
(i’) ∃xFx
(ii) There is at most one F .
(ii’) ∀x∀y((Fx&Fy) ⊃ x = y)
(iii) There is exactly one F .
(iii’) ∃x(Fx&∀y(Fy ⊃ x = y))
(iv) There are at least two F s.
(iv’) ∃x∃y((Fx&Fy)& ∼ x = y)
(v) There are at most two F s.
(v’) ∀x∀y∀z(((Fx&Fy)&Fz) ⊃ (z = x ∨ z = y))
(vi) There are exactly two F s.
(vi’) ∃x∃y(((Fx&Fy)& ∼ x = y)&∀z(Fz ⊃ (z = x ∨ z = y)))

I suspect you can see the pattern emerging.
Identity allows us to solve a logical puzzle. Consider the sentence
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(5) The present King of France is bald.

Is this sentence true or false? Well, if true, there should be a present King
of France, as the sentence asserts of him that he is bald. But there is no
such person. Hence the sentence must be false. But if it is false, doesn’t that
mean that the following is true:

(6) The present King of France is not bald.

But now it still looks as if there must be a King of France, as (6) asserts of
him that he is not bald, and so the sentence cannot be false either. How to
solve this dilemma?

Russell argued that (5) says something like this: there is someone who is
the present King of France, and there is exactly one such person, and he is
bald. The definite article ‘the’ suggests that the King of France exists and
that there is a unique object of this kind. The phrase ‘the present King of
France’ is called a definite description. Letting Fx stand for ‘x is present
King of France’ and Bx for ‘x is bald’, we can analyse (5) as

(5’) ∃x((Fx&∀y(Fy ⊃ x = y))&Bx)

(6) then says that there is exactly one King of France and he is not bald. In
other words:

(6’) ∃x((Fx&∀y(Fy ⊃ x = y))& ∼ Bx)

We can now see that (6’) is not the negation of (5’), and hence there is no
contradiction in saying that they are both false. Both entail that there is
a unique person who is the present King of France, but as there is no such
person, both sentences can be false without contradiction, as one is not the
negation of the other.

We can express that there is a unique F somewhat more concisely as
∃x∀y(Fy ≡ x = y). We can prove that this sentence is true if and only if
there is exactly one F . a) If this sentence is true, there must be at least one
F . The sentence says that for some x, everything which is F is identical to
it. Obviously, then, these x must be F , as they are self-identical. Suppose,
furthermore, that there are two things which are F . As everything which is an
F is identical to some x, they both are identical to x, and hence are identical
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to each other, given the properties of identity. Hence if ∃x∀y(Fy ≡ x = y)
is true, there is exactly one F . b) Conversely, assume that there is exactly
one F . Then clearly everything which is F is identical to it, so that, calling
the thing which is F x, ∀y(Fy ≡ x = y) is true of it. Thus obviously there is
something such that ∀y(Fy ≡ x = y) is true of it, hence ∃x∀y(Fy ≡ x = y).
Finally, putting a) and b) together shows that ∃x∀y(Fy ≡ x = y) is true if
and only if there is exactly one F .

We can extend the language of PLE even further by adding symbols for
functions. Functions are expressions which, when appended to a name, form
a complex name of an object. For instance, ‘the father of’ is a function, and
when appended to ‘John’, as in ‘the father of John’, can be used to refer to
whoever is John’s father. Functions are mostly used in mathematics, so let’s
have a look at an example involving the functions addition and multiplication.

Here is a famous conjecture, made by the mathematician Christian Gold-
bach in the 18th century, and which is still an unsolved problem of mathe-
matics:

(a) Every even number greater than 2 is the sum of two primes.

Using variables, we can rephrase (1) as:

(b) For any number x, if x is even and greater than 2, then there are
two numbers y and z such that x and y are prime numbers and the
sum of y and z is equal to x.

It is not difficult to formalise (b) using the following interpretation:

UD: natural numbers
Ex: x is even

x > y: x is greater than y
Px: x is prime

x + y: the sum of x and y

The formalisation of (1) then is:

(c) ∀x((Ex&x > 2) ⊃ ∃y∃z((Py&Pz)&y + z = x)))

This formalisation has assumed that the predicates ‘is even’ and ‘is prime’
are primitive predicates. But of course we can analyse ‘is even’ in terms of
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identity and the function of multiplication. ‘x is even’ means:

(i) There is a number w such that 2 times w is equal to x.

Thus we add to the interpretation:

x× y: x times y

‘x is even’ can now be formalised as:

(i’) ∃w(2× w = x)

Replacing Ex by (2’) in (1”) gives:

(d) ∀x((∃w(w × 2 = x)&x > 2) ⊃ ∃y∃z((Py&Pz)&y + z = x))

Finally, x is a prime number’ means:

(ii) x is different from 1 and if it is the product of two numbers, one of
them must be equal to 1

In other words:

(ii’) x is different from 1 and whenever two numbers y and z are such
that y times z is equal to x, then either y is equal to 1 or z is equal
to 1

Hence we can express ‘x is a prime number’ in symbols in the following way:

(ii”) x 6= 1&∀y∀z(x = y × z ⊃ (y = 1 ∨ z = 1))

Replacing (ii”) in (d) gives the formalisation of (a) using only the functions
addition and multiplication, and the relation ‘is larger than’ as non-logical,
mathematical primitives:

(e) ∀x((∃w(w × 2 = x)&x > 2) ⊃ ∃y∃z(((y 6= 1&∀v1∀v2(y = v1 × v2 ⊃
(v1 = 1 ∨ v2 = 1)))&(z 6= 1&∀v1∀v2(z = v1 × v2 ⊃ (v1 = 1 ∨
v2 = 1))))&y + z = x))

Nils Kurbis: Introduction to Logic 107



Lecture 15. Formalisation and
Axiomatisation

The formal language PLE allows us to formalise general properties of rela-
tions. Take, for instance, tallness and use the set of people as the universe of
discourse. Let Txy stand for ‘x is taller than y’ or, equivalently, ‘y is smaller
than x’. Obviously, if x is taller than y, then, if y is taller than z, x is taller
than z, or in symbols:

(1) ∀x∀y∀z(Txy ⊃ (Tyz ⊃ Txz))

Furthermore, nothing is taller than itself:

(2) ∼ ∃xTxx

Another property of tallness is this one: if x is taller than y, then y is not
taller than x:

(3) ∀x∀y(Txy ⊃∼ Tyx)

Given the way the world is, there are things which are incomparable with
respect to the relation ‘being taller than’: if two presons are equally tall,
neither is taller than the other. Hence the following is not true:

(4) ∀x∀y(Txy ∨ Tyx)

In English: of any two persons, one is smaller than the other. What is true
is the negation of (4), ∼ ∀x∀y(Txy ∨ Tyx), or equivalently:
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(5) ∃x∃y(∼ Txy& ∼ Tyx)

There are two persons neither of which is taller than the other.
Notice the difference between (1)-(3) and (4)/(5). (1)-(3) are true as a

consequence of the kind of concept ‘being taller than’ is. (4) is true as a
matter of empirical accident: as a matter of fact, some people have the same
height, but of course the world might have been such that all people have
different heights. So (4)/(5) is not a ‘conceptual truth’ about the tallness,
but one we know to be true given the properties of the things in the universe
of discourse. Correspondingly, obviously, if (4)/(5) were in fact true. (1)-(3)
are what could be called axioms for tallness. Appealing to an informal notion
of logical truth, we might even say that (1)-(3) are logically true, given the
interpretation of Txy as ‘x is taller than y’. Whatever is the case with the
people in the universe of discourse, (1)-(3) must be true if Txy is to mean ‘x
is taller than y’.

Given that some people are of equal height, the following two sentences
are also false:

(6) ∃x∀y(x 6= y ⊃ Txy)
(7) ∃y∀x(x 6= y ⊃ Txy)

(5) says that someone is taller than everyone else and (8) that someone is
smaller than everyone else. Both are false, because, as some people are of
equal height, i.e. are incomparable with respect to ‘being taller than’, that
there are no smallest or tallest people.

Notice that, given the interpretation of Txy as ‘x is taller than y’, (6)
and (7) entail that there is exactly one tallest/smallest person. For suppose
that two different people, call them a and b, are such that everyone is smaller
than them, i.e. ∀y(a 6= y ⊃ Tay) and ∀y(b 6= y ⊃ Tby). As ex hypothesi
a and b are different, it follows from these two sentences that Tab and Tba.
But this contradicts (2), which entails that it can never be the case that of
two things the first is taller than the second and conversely, the second taller
than the first. Hence, a and b cannot be different. The argument for the
case of the smallest person is exactly parallel. Hence, as (2) is an axiom for
tallness, we need not express ‘There is exactly one tallest person’ and ‘There
is exactly one smallest person’ as the more complex:

(8) ∃x(∀y(x 6= y ⊃ Txy)&∀z(∀w(z 6= w ⊃ Tzw) ⊃ z = x))
(9) ∃x(∀y(x 6= y ⊃ Tyx)&∀z(∀w(z 6= w ⊃ Twz) ⊃ z = x))
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(8) and (9) have the structure of ‘There is exactly one F ’ introduced in the
last lecture, where F is replaced by the rather complex properties ∀y(x 6= y ⊃
Txy) and ∀y(x 6= y ⊃ Tyx), respectively, which are the properties of being-
taller-than-everyone-else and being-smaller-than-everyone-else, respectively.

As there are only finitely many people, it is not the case that there always
is someone who is taller or smaller than a given person, and so the following
two are false: ‘everyone is taller than someone’ and ‘everyone is smaller than
someone’:

(10) ∀x∃yTxy
(11) ∀y∃xTxy

The falsity of (10) and (11) entails that (12) and (13) are true:

(12) ∃x∀y ∼ Txy
(13) ∃y∀x ∼ Txy

(12) says that someone is not taller than everyone, (13) that someone is not
smaller than everyone. This is quite trivially true, as I, for instance, am nei-
ther smaller nor taller than everyone, as I’m neither smaller nor taller than
myself (or everyone else who is as tall/small as me). We can express some-
thing more substantial by noting that the ordering of people by the relation
of tallness has beginning and endpoints, which is expressed by the following:

(14) ∃x∀y(∼ Txy)
(15) ∃y∀x(∼ Txy)

(14) says there is someone such that he is not taller than everyone: this is true
for someone who has the height of the tallest people: he’s taller than some
and equally tall as others, but the ordering does not go further than him, so
there is no one taller than him. Similarly, (15) says that there is someone
such that he is not smaller than everyone: this is true for someone who has
the height of the smallest people: he is smaller than some, and equally small
as others, but the ordering does not go lower than him, so there is no one
smaller than him.

Of course tallness is not the only relation which satisfies conditions (1)
to (3): as already mentioned, T could also be interpreted as ‘smaller than’.
Another options might be ‘is more difficult to understand than’, ‘is more
expensive than’ and < and > of mathematics.
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Here is some terminology categorising relations. Relations satisfying con-
dition (1) are called transitive relations, those satisfying condition (2) asym-
metric, and those satisfying condition (3) irreflexive.

Let’s contrast ‘being taller than’ with a closely related relation: ‘x is as
tall as or taller than y’, formalised as Oxy. This relation is also transitive.
But it is not irreflexive. To the contrary, everything is as tall or taller than
itself:

(16) ∀x∀y∀z(Ox ⊃ (Oy ⊃ Oz))
(17) ∀xOxx

Furthermore, Oxy is also not assymetric. If x is as tall as y, then both, x is
as tall or taller than y, and hence y is as tall or taller than x. Nonetheless,
the following does not hold:

(18) ∀x∀y(Oxy ⊃ Oyx)

If x is taller than y, then Oxy is true, but not conversely: Oyx is false.
Relations satisfying condition (17) are called symmetric. An example of

a symmetric relation is ‘x is as tall as y’. Formalised as Axy, it has the
following properties:

(19) ∀xAxx
(20) ∀x∀y(Axy ⊃ Ayx)
(21) ∀x∀y∀y(Axy ⊃ (Ayz ⊃ Axz))

Thus Axy is reflexive, symmetric and transitive. Such a relation is called
an equivalence relation. Another example of an equivalence relation is ‘x is
equal to y’.

Identity shares some properties with ‘being as tall as’: it too is an equiv-
alence relation. But it also satisfies another logical principle, from which, in
fact, all these properties except reflexivity follow: if two things are identical,
then whatever is true of the one is true of the other, or:

(22) ∀x∀y(x = y ⊃ (Fx ⊃ Fy))

This is often called the indiscernibility of identicals. Notice that the converse
principle ‘If everything that is true of one thing is also true of another thing,
then they are identical’, often called the identity of indiscernibles, is not
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expressible in the language of PLE! We cannot quantify over properties.
It might be worth contrasting the relations of identity and difference.

They differ in some of their properties but share others. Let’s write Dxy
for ‘x and y are different’. Difference is irreflexive: nothing is different from
itself. It is symmetric: if x is different from y, then y is different from x. It
is not transitive: if x is different from y, and y is different from z, then it
does not follow that x is different from y.

Let’s have a look at another example of a relation, possibly more inter-
esting than ‘taller than’. As the universe of discourse we’ll use the set of
moments of time in the past. The relation we’ll consider in is ‘x is earlier
than y’, which we’ll formalise as Exy. This relation is also transitive and
irreflexive: no moment of the past is earlier than itself, and if one moment of
earlier than another, which is earlier than a third, it is earlier than the third.
Contrary to tallness, the relation ‘earlier than’ does not ‘branch’. The past
goes in a straight line: any two different moments in time are comparable to
each other in the order imposed on them by ‘earlier than’. In case of tallness,
it was possible that two people were equally tall, which entailed they were
incomparable in terms of the relation of ‘being taller than’. In the case of
‘earlier than’, as there is only one past, there are no two distinct moments of
the past which are incomparable. In other words, if two moments of time are
distinct, then either one is earlier than the other, or the latter earlier than
the first. Also, if x is earlier than y, then y is not earlier than x, for any two
moments of time. This gives the following axioms for Exy:

(23) ∀x∀y∀z(Exy ⊃ (Eyz ⊃ Exz))
(24) ∀x∀y(x 6= y ⊃ (Exy ∨ Eyx))
(25) ∀x∀y(Exy ⊃∼ Eyx)

From (25) it follows that ‘earlier than’ is irreflexive, i.e. ∼ ∃xExx: for assume
that some moment of time, call it a, is earlier than itself, i.e. Eaa. Then
by (25) a is also not earlier than itself, i.e. ∼ Eaa. That’s a contradiction,
and hence no moment of time can be earlier than itself. (24) is equivalent to
∀x∀y(x = y ∨ (Exy ∨ Eyx)), i.e. of any two moments of time, either they
are the same or one is earlier than the other. Together with (25) it follows
that for any two moments of time x and y exactly one of x = y, Exy and
Eyx holds.

The relation ‘earlier than’ is somewhat more difficult than ‘taller than’.
For instance, we do not know whether time has a beginning or not. Be that
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as it may, we can formalise each claim. Suppose that there is a beginning of
time. Then the following axiom is also true of Exy:

(26) ∃x∀y(x 6= y ⊃ Exy)

(26) says that there is a moment in the past which is earlier than every other
moment. Together with the other properties of Exy this entails that there
is exactly one such moment: the first moment of time.

If instead we assume time not to have a beginning, we use this axiom:

(27) ∀x∃yEyx

If (27) is assumed to be true, it ensures that for every moment of the past,
there is an earlier one.

Another open question is whether between any two moments of the past,
where one is earlier than the other, there always is another one, in other
words:

(28) ∀x∀y(Exy ⊃ ∃z(Exz&Ezy))

If we consider the present moment of time to be one of the past moments,
then our universe of discourse has a last moment:

(29) ∃x∀y(y 6= x ⊃ Eyx)

Of course this might be true even if the present moment is not one of the
past moments, namely if time is discrete and consists of moments following
each between which there are no other moments. In this case (28) would
of course be false. If (28) is true of the earlier-than relation, and we don’t
consider the present moment as part of the past moments, then it is rather
implausible that there is a last point in the sequence of past moments, i.e.
(29) should be false. If there is neither a last nor a first moment of the past,
then we can express this slightly more shortly as:

(30) ∀y∃x∃z(Exy&Eyz)

Relations satisfying (19)-(21) are called linear orderings. Relations satisfying
(24) are called dense, and those satisfying (26) without end-points.
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Now consider the relation ‘is earlier than or simultaneous with’, the uni-
verse of discourse remaining the same, formalised as Sxy. This relation is
transitive and reflexive, but neither symmetric nor asymmetric. In other
words, we have (31) and (32) as axioms, but neither (33) nor (34):

(31) ∀x∀y∀z(Sxy ⊃ (Syz ⊃ Sxz)
(32) ∀xSxx
(33) ∀x∀y(Sxy ⊃ Syx))
(34) ∀x∀y(Sxy ⊃∼ Syx))

‘Earlier than or simultaneous with’ satisfies a property which is weaker than
asymmetry, namely that of any two different moments in the past, either the
first is earlier than or simultaneous to the the second or conversely:

(35) ∀x∀y(x 6= y ⊃ (Sxy ⊃∼ Syx))

Sxy also has another interesting property. As there is only one past, which is
composed of moments of time, if x is earlier than or simultaneous with y and
y is earlier than or simultaneous with x, then x must be the same moment
as y. In other words, Sxy satisfies the following property:

(36) ∀x∀y((Sxy&Syx) ⊃ x = y)

Relations satisfying (36) are called anti-symmetric. If a relation satisfies (31),
(32) and (36) it is called a partial ordering.

Here is a summary of properties of relations we have discussed in this
lecture:

R is ... iff ...
1 reflexive ∀xRxx
2 irreflexive ∼ ∃xRxx
3 symmetric ∀x∀y(Rxy ⊃ Ryx)
4 asymmetric ∀x∀y(Rxy ⊃∼ Ryx)
5 anti-symmetric ∀x∀y((Rxy&Ryx) ⊃ x = y)
6 transitive ∀x∀y∀z(Rxy ⊃ (Ryz ⊃ Rxz))
7 dense ∀x∀y(Rxy ⊃ ∃z(Rxz&Rzy))
8 without end-points ∀y∃x∃z(Rxy&Ryz)
9 weakly connected ∀x∀y(x 6= y ⊃ (Rxy ∨Ryx))
10 connected ∀x∀y(Rxy ∨Ryx)
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Here are some common terms to categorise relations satisfying a number of
these properties:

Relations satisfying ... are called...
1, 3, 6 equivalence relations
1, 5, 6 partial orderings
4, 6, 9 linear orderings
1, 5, 6, 10 simple orderings
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Lecture 16. The Semantics of
PLE: Truth and Interpretation

Truth-tables provided a semantics for the language SL of sentential logic:
they enabled us to determine whether a sentence is true or false given the
truth-values of its atomic components. We now need a semantics for the
language PL of predicate logic. In a sense, we have been doing semantics all
along, disguised in the symbolisation keys. As a preparatory step towards a
mathematically more rigourous treatment of the semantics of predicate logic
it is sufficient to notice that symbolisation keys can provide us with means
of determining the truth-values of atomic formulas, if we take into account
what we know about how the world is like. This is why it is legitimate to
talk about an interpretation when talking about a symbolisation key; the
symbolisation key gives the meanings of the symbols of PLE, which in turn
provides us with a means of determining the truth-conditions of sentences of
PLE. Consider, for instance, the following key:

UD: places
Ixy: x is in y
Cx: x is a city
Sx: x is a country

l: London
p: Paris
f : France
e: England

It provides an interpretation of formulas of PLE in the sense that we can
determine whether they are true or false given what we know about places.
Consider, for instance:
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(1) Cl&Ile
(2) Ilf
(3) ∼ Ipe
(4) ∼ (Ipe ∨ Ipf)
(5) Ipl ⊃ Ipe
(6) Ile ⊃ Ipl

(1) is true, because London is a city in England; (2) is false, because London
is not in France; (3) is true, because Paris is not in England; (4) is false,
because Paris is France; (5) is true, because Paris is not in London; (6) is
false, for the same reason and because London is in England.

We can also determine the truth-values of sentences involving quantifiers:

(7) ∀x(Cx ⊃ Ixe)
(8) ∀x(Sx ⊃ ∃y(Cy&Ixy))
(9) ∀x∀y(Ixy ⊃ Cx&Sy))

(7) is false because not every city is in England; (8) is true because there’s a
city in every country; (9) is false, because it’s not true that if one place is in
another, the larger one is a country and the smaller one a city: for instance,
Hyde Park is in London, but neither is London a country nor Hyde Park a
city.

Semantics can help us finding out whether we have translated a sen-
tence of English correctly into symbols, given an interpretation. Consider
the following two sentence. More often than never they are both offered as
formalisations of the same sentence of English, namely ‘Every city is in some
country’:

(10) ∀x(Cx ⊃ ∃y(Sy&Ixy))
(11) ∀x∃y((Cx&Sy) ⊃ Ixy)

(10) is true, because every city is in some country, or maybe more precisely:
for every city, there is a country in which it is. (11) is hard to translate into
fluent English: it says something that might be put like this: any city is in
something if that thing is a country. Let’s have a closer look at this example.
What would have to be the case with x and y so that (Cx&Sy) ⊃ Ixy is
true of them? It would suffice that either x is not a city or y is not a country.
For instance, let x be London and y be Paris, then Cx&Sy is false, hence
(Cx&Sy) ⊃ Ixy is true. For it to be false, we need an x which is a city and
a y which is a country, where x is not in y: for instance, let x be London and
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y be France. Still, if x refers to London, ∃y((Cx&Sy) ⊃ Ixy) is nonetheless
true, because, as noted, Paris is something that makes (Cx&Sy) ⊃ Ixy true,
if y refers to it. The next question is whether x can be anything we like and
∃y((Cx&Sy) ⊃ Ixy) still be true. The answer is yes. We’ll prove it in two
steps. First, if x is not a city, ∃y((Cx&Sy) ⊃ Ixy) is trivially true, because
Cx is then false, and y can be whatever we like without there being a chance
of making (Cx&Sy) ⊃ Ixy false, hence ∃y((Cx&Sy) ⊃ Ixy) is also true.
Hence, for every non-city x, there is something, y, that makes (Cx&Sy) ⊃
Ixy true. Secondly, if x is a city, we can also find a suitable y which makes
(Cx&Sy) ⊃ Ixy true. Take, for instance, something that is not a country.
So ∃y((Cx&Sy) ⊃ Ixy) is true also for any city x. Thus it is true whether x
is a city or not, and as everything either is a city or not, ∃y((Cx&Sy) ⊃ Ixy)
is true for anything whatsoever, hence ∀x∃y((Cx&Sy) ⊃ Ixy) is true.

Thus both, (10) and (11) are true. But the reasoning showing that (11)
is true also shows that it is true for the wrong reasons: it is somewhat too
easy to make true, which makes (11) a rather uninteresting claim. (10) on
the other hand is more substantial: it is true because, given any city, we
can find a country in which it lies. This becomes blatant if we interchange
the interpretations of Cx and Sx, so that Cx means ‘x is a country’ and
Sx means ‘x is a city’. This change in interpretation does not change the
truth-value of (11): it is still true, for reasons similar to why (11) was true
on the original interpretation. But (10) now is false, because it now says
that every country is in some city. Hence (10) and (11) can have different
truth-values on different interpretations, and that means they cannot be used
as formalisations of the same sentence of English.

Logic is not concerned an awful lot with what the world is like. Conse-
quently, we don’t have to give interpretations in such a way that the truth-
values of formulas are based on what is actually the case. Consider the
example we discussed a little while ago about Mary, John and Lucy and
their respective tallness. We don’t have to have some real persons in mind
to determine the truth-values of sentences in which the names ‘Mary’, ‘Lucy’
and ‘John’ occur. It is sufficient to specify a possible situation. For instance,
let Mary be taller than Lucy, and let John be as tall as Lucy. Here is the
symbolisation key:
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UD: Mary, John, Lucy
Txy: x is taller than y

m: Mary
j: John
l: Lucy

Now take the following sentences:

(12) Tml
(13) Tjl
(14) ∀xTmx
(15) ∀x(x 6= m ⊃ Tmx)
(16) ∃xTjx
(17) ∃xTxj

In the situation described, (12) is true, because Mary is taller than Lucy;
(13) is false, because John is as tall as Lucy; (14) is false, because Mary is
not taller than herself, i.e. she is not taller than everyone; (15), however,
is true, because Mary is taller than everyone else who is not Mary; (16) is
false, because no one is smaller than John; (17) is true, because someone, i.e.
Mary, is taller than John.

Suppose we stipulate alternatively that Lucy is taller than John, and John
is taller than Mary, for instance. Then the truth-values of the sentences (12),
(15), (16) and (17) change, the others remaining the same.

Predicate letters of PL can be interpreted as we like: the symbols of
the language taken by themselves are meaningless. An interpretation gives
them meaning. If we ask ourselves whether we can find an interpretation of
a sentence on which it is true, we are considering what the sentences of PL
could mean, and here we are completely free concerning what we let predicate
letters (and names) stand for. However, when giving a semantics for sentences
of PLE, we need of course interpret the symbol = as identity. This is the
only predicate letter of the language which has a fixed interpretation. This
has some consequences worth noting. First of all, any interpretation must
be such that any statement of the form a = a is true. Secondly, if a = b is
interpreted as true, i.e. a and b stand for the same object, then, if something
is true of one, it must be true of the other. In other words, if a = b is true,
then, if Pa, the sentence resulting from replacing a by b (in some, but not
necessarily all places), i.e. Pb, must also be true. If an interpretation does
not satisfy these conditions, then we have not succeeded in giving the symbol
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= its intended interpretation as identity.
We are now in a position to define notions of logical truth, falsity, inde-

terminacy, etc.. We have noted that some sentences of PLE can come out
as true on one interpretation, but false on others. This is of course exactly
parallel to the case of SL, where some sentences may come out as true or
false on different truth-value assignment. In PLE, the work of a truth-value
assignment is done by the more complex one of an interpretation. An inter-
pretation is, informally, a device that specifies, for each name what it refers
to, for each predicate which objects it is true of, for each relation which
objects stand in it to each other, and for each sentence letter whether it is
true or false. For the time being, this suffices; we shall have a closer look at
interpretation in the next lecture. We can now start the defining. First, a
formally precise notion of logical truth for predicate logic:

DEFINITION. A sentence P of PLE is quantificationally true if and only if
P is true on every interpretation.

Secondly, here is the notion capturing the informal notion of logical falsehood:

DEFINITION. A sentence P of PLE is quantificationally false if and only if
P is false on every interpretation.

Finally, we need a term for sentences which are neither of the two:

DEFINITION. A sentence P of PLE is quantificationally indeterminate if
and only if P is neither quantificationally true nor quantificationally false.

All the sentences given earlier in this lecture are examples of sentences which
are quantificationally indeterminate. We already encountered an example of
a sentence that is quantificationally false, or a contradiction:

(18) ∃xFx& ∼ ∃yFy

Of course, all sentences of SL which are truth-functionally false are also quan-
tificationally false in PLE. Here are two examples of quantificationally true
sentences:
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(19) Fa ⊃ ∃xFx
(20) ∀xFx ⊃ Fa

(19) says that if a is F , then there is something which is F . Whatever
property F might express and whatever object a might refer to, this must
be true. (20) says that if everything has the property F , then a particular
object named by ‘a’ also has it. Again this must be true whatever F and a
are.

Next, we need a notion expressing that two formulas say the same thing.
This is captured by the following definition:

DEFINITION. Sentences P and Q of PLE are quantificationally equivalent
if and only if there is no interpretation on which P and Q have different
truth-values.

For instance, the following pairs of sentences exhibit this property:

(21.a) ∀xFx
(21.b) ∼ ∃x ∼ Fx

(22.a) ∀x(Fx ⊃∼ Gx)
(22.b) ∼ ∃x(Fx&Gx)

(21.a) says that everything is F , (21.b) that nothing fails to be F : both
always have the same truth-value, no matter what F is. (22.a) and (22.b)
both say that no F is a G, and thus, too, are quantificationally equivalent.

The last definitions for today capture the notions of consistency and in-
consistency for PLE:

DEFINITION. A set of sentences of PLE is quantificationally consistent if
and only if there is at least one interpretation on which all the members of
the set are true.

DEFINITION. A set of sentences of PLE is quantificationally inconsistent if
and only if the set is not quantificationally consistent.

Of course we’ll also need notions of validity and invalidity, but we’ll leave
that for the next lecture.
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To assess whether arguments formalised in predicate logic are valid or invalid,
we need definitions of these notions. Here they are:

DEFINITION. An argument of PLE is quantificationally valid if and only if
there is no interpretation on which every premise is true and the conclusion
is false.

DEFINITION. An argument of PLE is quantificationally invalid if and only
if the argument is not quantificationally valid.

Arguments have only finitely many premises. So these definitions do not
cover the case where we want to draw inferences from infinitely many sen-
tences. The following definition caters for the more general case:

DEFINITION. A set Γ of sentences of PLE quantificationally entails a sen-
tence P of PLE if and only if there is no interpretation on which every
member of Γ is true and P is false.

Notice that these definitions only cover the cases where the premises and
conclusions are sentences (this follows from the definition of an argument).
In PLE, however, there is also the wider category of formulas, which are like
sentences only that they may contain free variables. To interpret formulas, we
need to assign objects to the variables. The notion of a variable assignment
is also needed to give recursive truth-conditions for formulas of the form ∃xQ
and ∀xQ. In sentential logic, the truth-tables provided us with a means of
calculating the truth-value of a sentence on the basis of the truth-values of
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its atomic components. We want to do something similar for sentences of
the forms ∃xQ and ∀xQ on the basis of their component formula, i.e. Q,
which has x free. To do so, we need something like a notion of truth that is
applicable to formulas with free variables. As will become apparent during
the discussion, we won’t call this notion ‘truth’, but satisfaction, which may
avoid some possible confusions. Once this is done, we can redefine the notions
of truth and falsity on an interpretation in terms of satisfaction, and extend
the definition of entailment to cover also the cases where the premises and
conclusions are from the wider class of formulas. We could also extend the
notion of an argument so as to allow for free variables in the premises or the
conclusion.

First, we need to be a little more specific about what an interpretation
as a device allowing us to determine truth-conditions of sentences of PLE
does to predicate letters. We said that, for instance, Fa is true on an inter-
pretation, just in case the object referred to by a has the property F on the
interpretation, and similarly, Rab is true on an interpretation just in case
the objects referred to be a and b stand in relation R to each other on the
interpretation, and also that Babc is true of a, b and c just in case a, b and
c stand in the relation B to each other on the interpretation. Thus we can
say that an interpretation assigns to a one-place predicate letter F the in-
dividuals having the property that F is interpreted as expressing, it assigns
to a two-place letter R the pairs of objects standing in the relation to each
other that R is interpreted as expressing, to a three-place predicate letter
B the triples standing in the relation to each other that B is interpreted as
expressing, and so on, four-place predicate letters are assigned quadruples of
objects of the universe of discourse, five-place predicate letters quintuples,
six-place letters sextuples, etc.. We can generalise this: an interpretation
of the language of PLE assigns to each n-place predicate letter n-tuples of
objects of the universe of discourse. n-tuples are written in the following
way: 〈o1 . . . on〉. And furthermore an interpretation assigns to each constant
an object and to each sentence letter a truth-value.

Here is an example. Take the following symbolisation key:
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UC: England, France, Spain, Germany and their capitals
a: London
b: Paris
c: Berlin
d: Madrid
e: England
f : France
g: Germany
h: Spain

Fx: x is a city
Gxy: x is capital of y

Hxyz: y is between x and z
Iwxyz: w is as far away from x as y is from z

We can summarise what is the case in the world in a table like the following:

Predicate True of
x is a city London, Paris, Berlin, Madrid

x is capital of y London-England,
Paris-France,
Berlin-Germany,
Madrid-Spain

y is between x and z Berlin-Paris-Madrid,
Madrid-Paris-Berlin
Germany-France-England
England-France-Germany
Germany-France-Spain
Spain-France-Germany

w is as far away from x London-Berlin-Paris-Madrid,
as y is from z Berlin-London-Paris-Madrid,

Berlin-London-Madrid-Paris,
London-Berlin-Madrid-Paris,
Madrid-Paris-Berlin-London,
Paris-Madrid-Berlin-London,
Paris-Madrid-London-Berlin,
Madrid-Paris-London-Berlin
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We can represent more formally which n-tuples of objects are assigned to
predicate letters of the language PLE by an interpretation:

Predicate assigned by interpretation
F a, b, c, d
G 〈a, e〉, 〈b, f〉, 〈c, g〉, 〈d, h〉
H 〈c, b, d〉, 〈d, b, c〉, 〈g, f, e〉, 〈e, f, g〉, 〈g, f, h〉, 〈h, f, g〉
I 〈a, c, b, d〉, 〈c, a, b, d〉, 〈c, a, d, b〉, 〈a, c, d, b〉, 〈d, b, c, a〉,

〈b, d, c, a〉, 〈b, d, a, c〉, 〈d, b, a, c〉
The table shows more clearly what an interpretation does: not only does it
give meaning to the otherwise meaningless strings of symbols that are the
sentences of PLE: crucially, it does so by specifying which objects in the
universe of discourse have the properties or stand in the relations expressed
by the predicate letters. The interpretation thereby determines which atomic
sentences of PLE are true on it. Notice that we do not also need to say
explicitly which things fail to have a property or don’t stand in a relation to
each other. What isn’t specified in the list doesn’t hold. The list specifies
both, what is and what is not the case, by specifying what is the case.

Before going on to discussing variable assignments, let’s see how we can
use the interpretation to assign truth-values to sentences and to determine
whether arguments are valid. For instance, consider the following sentences:

(1) ∀x(Fx ⊃ ∃yGxy)
(2) ∀y∀y∀z(Hxyz ⊃ Fy)
(3) ∀x∀y(Ixdya ⊃ (x = b&y = c))

(1) says that every city is a capital. That’s true on our interpretation, because
the universe of discourse contains only capital cities. (2) says that everything
that is between two things is a city. That’s false, because France is between
two things, but it is not a city. (3) is also true, because Paris and Berlin are
the only things in the universe of discourse that make Ixdya true, where x
is assigned Paris and y Berlin.

The truth-values an interpretation allows us to assign to sentences of
PLE of course then also allow us to determine whether arguments are in-
valid. Consider the following, quite obviously silly, argument:
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(1) ∀x(Fx ⊃ ∃yGxy)
(2) Fa
(3) Gaf

This argument is invalid, because, on our interpretation, all the premises are
true but the conclusion is false.

It is rather more difficult to determine whether an argument is valid:
how do we find out that an argument never has true premises and a false
conclusion for any interpretation of the symbols occurring in them? One way
is of course to prove that this holds: assuming there to be an interpretation
on which the premises are true and the conclusion false should lead to a
contradiction if the argument is valid. Another way will be provided by the
system of natural deduction for PLE to be introduced in the next lectures.

Variable assignments do what their name says: they assign objects in the
universe of discourse to the free variables of a formula. They do so relative
to an interpretation. A variable assignment ‘completes’ an interpretation in
case formulas contain free variables. We say that variable assignments satisfy
formulas on interpretations, a notion we are going to define by induction in a
few paragraphs. Informally, where t1. . . tn are terms, i.e. either variables or
individual constants, what is meant is that if the objects assigned to the indi-
vidual constants amongst t1. . . tn by the interpretation i and to the variables
amongst t1. . . tn by the variable assignment v form an n-tuple assigned to
the predicate letter Q by the interpretation, then v satisfies Qt1. . . tn on i.
On the basis of this concept we can give a formally precise definition of truth
on an interpretation for the whole language PLE, encompassing sentences as
well as formulas.

The reason for this intermediate step via the notion of satisfaction is the
following. Variables can stand for anything in the universe of discourse of
the interpretation. Hence what has been said by a formula containing free
variables depends on which variable assignment we are using. In a sense, a
variable assignment is like a demonstrative gesture that fixes the reference
of a demonstrative on an occasion of its use: a variable assignment fixes the
reference of free variables used on a specific occasion.

Satisfaction is a notion relative to a variable assignment and an interpre-
tation. We could of course have called the concept of satisfaction ‘truth on
an interpretation for a variable assignment’, or something along those lines,
but this might have been confusing. We want our notion of truth on an
interpretation to be independent of this variety: it is a notion which makes

Nils Kurbis: Introduction to Logic 126



Lecture 17 Semantics: Validity and Satisfaction

no reference to a specific variable assignment any more. It is a notion which
is not relative to variable assignments, in the sense that different variable
assignment do not change whether a sentence is true on an interpretation
simpliciter.

Let’s write v(x) to refer to the object the variable assignment v assigns
to the variable x and i(E) to refer to whatever the interpretation i assigns to
the expression E ; i.e. if E is a constant, i(E) is an object of the universe of
discourse, if E is an n-place predicate letter, i(E) is a set of n-tuples 〈o1 . . . on〉
of objects of the universe of discourse, and if E is a sentence letter, then i(E)
is one of the truth-values T and F. When giving truth-conditions of arbitrary
formulas in the language, we’ll need to consider what both, v and i do to
terms of the language, where a term is either a constant or a variable. Where
t is a term, let i/v(t) stand for the object i assigns to t if it is a name or the
object v assigns to t if it is a variable. Finally, v[x/o] is a variable assignment
which is just like v, except that it assigns the object o from the universe of
discourse to the variable x.

We can now define what it means that a variable assignment satisfies a
formula on an interpretation:

1. If P is a sentence letter, then a variable assignment v satisfies P
on interpretation i if and only if i(P) = T.

2. If P is an atomic formula of the form Qt1. . . tn, then v satisfies
P on i if and only if 〈i/v(t1) . . . i/v(tn)〉 is one of i(Q).

3. If P is of the form ∼ Q, then v satisfies P on i if and only if v
does not satisfy Q on i.

4. If P is of the form P&Q, then v satisfies P on i if and only if v
satisfies P and Q.

5.-7. Similarly for P ⊃ Q etc..
8. If P is of the form ∀xQ, then v satisfies P on i if and only if for

every member o of the universe of discourse of i, v[x/o] satisfies
Q on i.

9. If P is of the form ∃xQ, then v satisfies P on i if and only if for
some member o of the universe of discourse of i, v[x/o] satisfies
Q on i.

Notice that v only plays a role in clauses 2., 8. and 9., i.e. only where free
variables may be involved.

We can now define truth on an interpretation in terms of satisfaction:
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DEFINITION. A sentence P of PLE is true on an interpretation i if and
only if every variable assignment v for i satisfies P on i.

DEFINITION. A sentence P of PLE is false on an interpretation i if and
only if no variable assignment v for i satisfies P on i.

These definitions hold only for sentences. The reason for the restriction
is that we want to ensure that whatever it is that truth and falsity on an
interpretation apply to, it should be such that everything of this kind is either
true or false.

The point of introducing the notion of satisfaction is not just to enable us
to give a definition of truth on an interpretation. Probably more importantly,
we can now give a definition of logical entailment for formulas as premises
and conclusions:

DEFINITION. A set of formulas Γ of PLE entails a formula P of PLE if
and only if for every interpretation i and every variable assignment v, if v
satisfies all members of Γ on i, then v satisfies P on i.

Should we extend the notion of an argument so that premises and conclusions
can be from the wider class of formulas, not just sentences, we need to give
new definitions of the notions of validity and invalidity of arguments. As it
is fairly obvious what they would be, I won’t give them here.
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The last thing we need to do to complete our treatment of logic is to extend
the system of natural deduction to contain also rules for the quantifiers ∀ and
∃. Let’s start with ∀. It is not difficult to see what a suitable elimination
rule for ∀ is: if everything has a certain property, then a particular thing has
it. Recall the notation P(a/x): it denotes the formula which results from
P by substituting all occurrences of x by a. P(a/x) is called a substitu-
tion instance of ∀xP. Thus, the elimination rules for ∀ allows us to infer any
substitution instance P(a/x) of ∀xP from that very formula. In other words:

Universal Elimination (∀E)

∀xP

� P(a/x)

We can use this rule to derive the logical law that says that if everything has
a property F , then a particular thing, say a, also has this property:

` ∀xFx ⊃ Fa
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1 ∀xFx Assumption

2 Fa 1 ∀E

3 ∀xFx ⊃ Fa (1)-(2) ⊃I

Another example, if every F is a G, then, if a is F , it is also G:

∀x(Fx ⊃ Gx), Fa ` Ga

1 ∀x(Fx ⊃ Gx) Assumption

2 Fa Assumption

3 Fa ⊃ Ga (1) ∀E

4 Ga (2), (3) ⊃E

Furthermore, if everything which is ∼ F is also G, then, if a does not have
property G, it follows that a is F :

∀x(∼ Fx ⊃ Gx),∼ Ga ` Fa

1 ∀x(∼ Fx ⊃ Gx) Assumption

2 ∼ Ga Assumption

3 ∼ Fa ⊃ Ga (1) ∀E

4 ∼ Fa Assumption

5 Ga (3), (4) ⊃E

6 ∼ Ga (2) R

7 Fa (3)-(6) ∼E

The elimination rule for the universal quantifier is straightforward, so let’s
move on to the next rule.

The introduction rule for the universal quantifier is somewhat more com-
plicated. Assume that, for some arbitrarily chosen individual a, Fa has been
derived. Then everything should have the property F , because, as a was
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arbitrary, we could have chosen any other object instead of it. What does it
mean that a is arbitrary? It means that first of all, that a does not occur in
the primary assumptions or premises of the argument: otherwise we would
make specific assumptions about a, as a would name a specific thing one of
the premises is about: in that case a could hardly be called arbitrary. Fur-
thermore, if a is arbitrary, we should not make any other specific assumptions
about a either, i.e. a should not occur in an auxiliary assumption either. If
we let logic alone decide what properties a has, then we can call a arbitrary.
Here is an example. If everything which is an F also is a G, then we should
be able to infer that if everything is F , everything is G. In other words, we
want ∀x(Fx ⊃ Gx) ` ∀xFx ⊃ ∀xGx. This should be the beginning of the
deduction:

1 ∀x(Fx ⊃ Gx) Assumption

2 Fa ⊃ Ga (1) ∀E

3 ∀xFx Assumption

4 Fa (3) ∀E

5 Ga (2), (4) ⊃E

Now have a look at a. It does not occur in any primary assumption of the
deduction. It also does not occur in an auxiliary assumption in the subde-
duction ending with Ga in line (5). In fact, it has been arbitrarily chosen
in steps (2) and (4) to instantiate ∀x(Fx ⊃ Gx) and ∀xFx. We could just
as well have chosen any other lower case letter. Thus Ga holds for arbitrary
names. Hence we should be able to apply the introduction rule for the uni-
versal quantifier and infer ∀xGx, and finally, the introduction rule for ⊃ to
derive the desired conclusion:

∀x(Fx ⊃ Gx) ` ∀xFx ⊃ ∀xGx
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1 ∀x(Fx ⊃ Gx) Assumption

2 Fa ⊃ Ga (1) ∀E

3 ∀xFx Assumption

4 Fa (3) ∀E

5 Ga (2), (4) ⊃E

6 ∀xGx (5) ∀I

7 ∀xFx ⊃ ∀xGx (3)-(6) ⊃I

In general, the introduction rule for the universal quantifier is this one:

Universal Introduction (∀I)

P(a/x)

� ∀xP

provided that a is arbitrary and we also need to make sure that all occur-
rences of a in P(a/x) have been replaced by x to form ∀xP. In other words,
the following two conditions have to be fulfilled:

(i) a does not occur in an undischarged assumption
(ii) a does not occur in ∀xP

The second condition is needed to exclude applications of the rule as in the
following failed deduction:

1 ∀xIxx Assumption

2 Iaa (1) ∀E

3 ∀xIxa (2) ∀I

The last step in this ‘deduction’ is incorrect. Otherwise, interpreting Ixy
as ‘x is identical to y’, it would follow, as everything is identical to itself
(∀xIxx), that everything is identical to a certain object a, i.e. there could
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only be one object. Certainly that is not true, so the inference of ∀xIxa from
∀xIxx is invalid. We block it in the natural deduction calculus by requiring
that all occurrences of a in P(a/x) are replaced by x: this requirement is
violated in the attempted deduction.

Here is another example of something we can prove using the rules of
inference for the universal quantification:

` ∀x(Fx&Gx) ≡ (∀xFx&∀xGx)

1 ∀x(Fx&Gx) Assumption

2 Fa&Ga (1) ∀E

3 Fa (2) &E

4 ∀xFx (3) ∀I

5 Ga (2) &E

6 ∀xGx (5) ∀I

7 ∀xFx&∀xGx (4), (6) &I

8 ∀xFx&∀xGx Assumption

9 ∀xFx (8) &E

10 Fa (9) ∀E

11 ∀xGx (8) &E

12 Ga (11) ∀E

13 Fa&Ga (10), (12) &I

14 ∀x(Fx&Gx) (13) ∀I

15 ∀x(Fx&Gx) ≡ (∀xFx&∀xGx) (1)-(7), (8)-(14) ≡I

This is obviously true: if everything is both, F and G, then everything is F
and everything is G, and conversely.

Now for the rules for the existential quantifier. This time it is the intro-
duction rule which is straightforward. If a particular thing, say a, has the
property F , then something has the property F :
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Existential Introduction (∃I)

P(a/x)

� ∃xP

We can use this rule to prove that if everything has the property F , then
something does:

` ∀xFx ⊃ ∃xFx:

1 ∀xFx Assumption

2 Fa 1 ∀E

3 ∃xFx (2) ∃I

4 ∀xFx ⊃ ∃xFx (1)-(3) ⊃I

We can also prove an important relation between existential and universal
quantification:

∼ ∀x ∼ Fx ` ∃xFx

1 ∼ ∀x ∼ Fx Assumption

2 ∼ ∃xFx Assumption

3 Fa Assumption

4 ∃xFx (3) ∃I

5 ∼ ∃xFx (2) R

6 ∼ Fa (3)-(5) ∼I

7 ∀x ∼ Fx (6) ∀I

8 ∼ ∀x ∼ Fx (1) R

9 ∃xFx (2)-(8) ∼E
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To prove the converse – ∃xFx `∼ ∀x ∼ Fx – we need the elimination rule
for the existential quantifier, which we’ll introduce now.

The elimination rule for the existential quantifier is more complicated.
Suppose you have deduced that a certain formula, say B, follows from an
assumption in which a name occurs, say Fa. Then Fa entails B. Now
consider the weaker assumption, that there is an x which is F , ∃xFx. If a
was arbitrarily chosen, then we can infer that ∃xFx also entails B, because
in that case a can do the job of an instance of F , of which at least one must
exist, if ∃xFx is true. Again, it is essential that a is arbitrary. ∃xFx asserts
the existence of some instances of F , but nothing about any instances in
particular. All we know is that there are some things which are F ; whatever
they are, let’s call one of them a: we assume nothing over and above about
a than that it is an instance of F -ness. This means that we cannot assume
a to have any other properties besides F -ness, except what follows logically
from the other assumption we have made, in which a, then, must not occur.
Furthermore, a should also not occur in B: if it does not, then we ensure that
the conclusion we draw is independent of which things have the property F .
Here is a slightly different way at looking at the rule. Suppose you derive a
sentence ∃xFx. Thus you know that something must be F . Give one of the
things which are F an arbitrary name, i.e. one not occurring undischarged
premises, for instance a, and start a new subdeduction beginning with Fa as
auxiliary assumption. Notice that the inference from ∃xFx to Fa is of course
invalid: that something is F does not entail that a specific a is F , as ∃xFx
can of course be interpreted as true, while Fa is interpreted as false. But we
are not inferring Fa from ∃xFx: what we do is to start a new subdeduction
beginning with Fa as an auxiliary assumption. We then attempt to infer a
formula, say B, which does not contain a, i.e. it is independent of our choice
of a. Thus on every interpretation on which Fa is true, B is true. But, as a
was arbitrary and does not occur in B, we can now assert that B must also
follow from ∃xFx: under the assumption that an arbitrary thing is F , we
have derived a formula which is independent of what that thing is, hence it
follows from the weaker assumption that ∃xFx.

The rule for existential quantifier elimination, then, is this one:

Existential Elimination (∃E)
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∃xPx

P(a/x)

Q

� Q

The following three conditions need to be fulfilled:

(i) a does not occur in an undischarged assumption
(ii) a does not occur in Q
(iii) a does not occur in ∃xPx

In other words, when we come across a formula of the form ∃xPx in a
deduction, we add a subdeduction beginning with the auxiliary assumption
P(a/x), where a is a constant not occuring in ∃xP and any undischarged
assumption, i.e. it is arbitrary, and then aim to derive a sentence Q which
also does not contain a. Then we can close off the subdeduction and assert
Q as following from ∃xPx.

Condition (iii) is not met in the following failed deduction:

1 ∃xRxa Assumption

2 Raa Assumption

3 ∃xRxx (2) ∃I

4 ∃xRxx (1), (2)-(3) ∃E

That the inference of ∃Rxx from ∃xRxa is invalid is easily seen if we interpret
a as referring to the number 1 and Rxy as the relation ‘x is less than y’:
then it is true that there is something which is less than 1, i.e. 0, but not
true that something is less than itself. Condition (iii) ensures that such
invalid inferences are excluded from being inferable in the system of natural
deduction.
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Here are some examples of deductions using the elimination rule for the
existential quantifier.

∀x(Gx ⊃ Fx),∃xFx ` ∃xGx

1 ∀x(Gx ⊃ Fx) Assumption

2 ∃xGx Assumption

3 Ga ⊃ Fa (1) ∀E

4 Ga Assumption

5 Fa (3), (4) ⊃E

6 ∃xFx (5) ∃I

7 ∃xFx (2), (4)-(6) ∃E

∃xFx `∼ ∀x ∼ Fx

1 ∃xFx Assumption

2 Fa Assumption

3 ∀x ∼ Fx Assumption

4 Fa (2) R

5 ∼ Fa (3) ∀E

6 ∼ ∀x ∼ Fx (3)-(5) ∼I

7 ∼ ∀x ∼ Fx (1), (2)-(6) ∃E
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` ∃x(Fx ∨Gx) ≡ (∃xFx ∨ ∃xGx)

1 ∃x(Fx ∨Gx) Assumption

2 Fa ∨Ga Assumption

3 Fa Assumption

4 ∃xFx (3) ∃I

5 ∃xFx ∨ ∃xGx (4) ∨I

6 Ga Assumption

7 ∃xGx (6) ∃I

8 ∃xFx ∨ ∃xGx (7) ∨I

9 ∃xFx ∨ ∃xGx (2), (3)-(5), (6)-(8) ∨E

10 ∃xFx ∨ ∃xGx (1), (2)-(9) ∃E

11 ∃xFx ∨ ∃xGx Assumption

12 ∃xFx Assumption

13 Fa Assumption

14 Fa ∨Ga (13) ∨I

15 ∃x(Fx ∨Gx) (14) ∃I

16 ∃x(Fx ∨Gx) (12), (13)-(15) ∃E

17 ∃xGx Assumption

18 Ga Assumption

19 Fa ∨Ga (18) ∨I

20 ∃x(Fx ∨Gx) (19) ∃I

21 ∃x(Fx ∨Gx) (17), (18)-(20) ∃E

22 ∃x(Fx ∨Gx) (11), (12)-(16), (17)-(21) ∨E

23 ∃x(Fx ∨Gx) ≡ (∃xFx ∨ ∃xGx) (1)-(10), (11)-(22) ≡I
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Basis Notions of Proof-Theory

To complete the system of natural deduction for predicate logic, we need to
add rules for identity. The introduction rule for identity used by Bergmann
et al. is somewhat non-standard, as it contains not only identity but also
universal quantification. The rule allows for the derivation of the sentence
‘Everything is self-identical’ at any step in a deduction:

Identity Introduction (=I)

� ∀x(x = x)

Alternatively, we could use the rule that allows to infer at any step in a de-
duction any sentence asserting, of an arbitrary object, that it is self-identical:

Alternative Identity Introduction (=I)

� a = a

Both rules obviously amount to the same thing: it is an obvious consequence
of Bergmann et al. original rule that it allows us to infer any sentence of
the form a = a at any step in a deduction: this follows by an application
∀E after ∀x(x = x) has been introduced by an application of Bergmann et
al. identity introduction. Conversely, the alternative identity introduction
rule allows us to derive a sentence of the form ∀x(x = x) at any step in
the deduction: this follows by ∀I, applied after an application of alternative
identity introduction, where a has been chosen such as not to occur in any
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undischarged assumption, which, of course, is always possible, as there is an
unlimited supply of names in the language.13

The elimination rule for identity is the more substantial one. It is a ver-
sion of Leibniz Law: if a and b are the same, then, if a has property P , so
does b. In rule form:

Identity Elimination (=E)

a = b

P

� P(a//b)

Here P(a//b) means that b has been replaced by a at zero or more places
in P.

Let’s use the rules for identity to prove some things about it. For in-
stance, if a has the property F , and b has a property G which excludes it
from having F , then a cannot be the same as b:

` Fa, Gb, ∀x(Gx ⊃∼ Fx) `∼ a = b

1 Fa Assumption

2 Gb Assumption

3 ∀x(Gx ⊃∼ Fx) Assumption

4 Gb ⊃∼ Fb (3) ∀E

5 ∼ Fb (2), (4) ⊃E

6 a = b Assumption

7 Fb (1), (6) =E

8 ∼ Fb (5) R

9 ∼ a = b (6)-(8) ∼I

13Recall the discussion of arbitrarily chosen objects in connection to universal quantifier
introduction.
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An example would be if a is red all lover and b is blue all over: if something
is blue all over it is not red all over, hence a and b must be different.

We can also show that identity has some important properties. For in-
stance, we can prove that it is transitive:

` ∀x∀y∀z(x = y ⊃ (y = z ⊃ x = z))

1 a = b Assumption

2 b = c Assumption

3 a = c (1), (2) =E

4 b = c ⊃ a = c (2)-(3) ⊃I

5 a = b ⊃ (b = c ⊃ a = c) (1)-(4) ⊃I

6 ∀z(a = b ⊃ (b = z ⊃ a = z)) (5) ∀I

7 ∀y∀z(a = y ⊃ (y = z ⊃ a = z)) (6) ∀I

8 ∀x∀y∀z(x = y ⊃ (y = z ⊃ x = z)) (7) ∀I

Identity is also symmetric:

` ∀x∀y(x = y ⊃ y = x)

1 a = b Assumption

2 ∀x(x = x) =I

3 a = a (2) ∀E

4 b = a (1), (3) =E

5 a = b ⊃ b = a (1)-(4) ⊃I

6 ∀y(a = y ⊃ y = a) (5) ∀I

7 ∀x∀y(x = y ⊃ y = x)

Obviously, identity is reflexive, which follows immediately by (=I).
Once we have identity, it makes a lot of sense to extend the language to

contain function symbols. A function is an expression which, similar to a
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predicate, takes a fixed number of names and forms a new expression out of
them. The difference is that functions don’t form sentences out of names,
but rather other, more complex names. Take, for instance, ‘father of’. This
is a function: when appended to the name ‘Anna’, say, we get ‘father of
Anna’ which gives us a means of referring to Anna’s father. Functions corre-
late things with other things; for instance, the function ‘father of’ correlate’s
Anna with her father. Another example is the addition functions in mathe-
matics: + correlates two objects with their sum, for instance it correlates 7
and 5 with the number 12. Functions, just like predicates come with differ-
ent numbers of places: ‘father of’ is a one-place function, + is a two-place
function, and so on. Generalising, n-place functions are correlations of n
objects, or alternatively n-tuples of objects, from the universe of discourse
with objects from the universe of discourse. Crucially, an n-place function
always correlates n objects with exaclty one object. Otherwise we could not
use functions to construct complex names of objects: names in the formal
language are such that they always name exactly one thing. So, for instance,
although ‘sister of’ may sound on the face of it like a function, given the
obvious grammatical similarity with ‘father of’, it is not a function if the
universe of discourse contains, for instance, me: I have two sisters, so ‘sister
of Nils’ cannot be used to name a unique object. We also require functions
to correlate any tuple of the right number of objects to an object. Thus,
if the universe of discourse also contains people who don’t have sisters, for
instance my friend Daniel, again ‘sister of’ cannot be a function in our sense,
because ‘sister of Daniel’ names no one, as Daniel doesn’t have a sister. On
the other hand, if the universe of discourse contains only people with exactly
one sister, then ‘sister of’ can be introduced into our language as function.
Notice that this means that mathematical functions like addition are only
functions if either a) the universe of discourse is restricted to the right kinds
of objects for pairs of which sums are defined, e.g., numbers, or b) we need to
decide the question what, for instance, ‘Mary+John’ is supposed to refer to:
this could be done by laying down that it refers to some arbitrarily chosen
object of the universe of discourse, say Lucy.

We call that which is correlated by a function its argument, if we consider
it to be an n-tuple of object, or its arguments in the plural, if we consider
it to be a plurality of objects,14, and that which the argument/s is/are cor-

14n-tuples of objects are, although in some sense made up of n objects, once more
individual things.
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related to the value of the function for the argument/s. Thus there are two
conditions that have to be fulfilled for something to be a function:

1. An n-place function must correlate one and only one value with
each n-tuple of arguments.

2. Arguments and values must be from the same universe of discourse.

These conditions ensure that the deviant situations discussed earlier won’t
arise.

We call complex names formed by means of functions terms. We count
amongst them also the individual constants and individual variables. Here
is the definition:

1. Individual variables are terms.
2. Individual constants are terms.
3. If f is an n-place function and t1. . .tn are terms, then ft1. . .tn is a

term.
4. Nothing else is a term.

We call individual constants and variables simple terms, all others complex
terms. A term (simple or complex) containing a variable is called open,
otherwise it is closed.

We have formulated the rules for the quantifiers in the natural deduction
system only with reference to individual constants, i.e. one kind of simple
terms. But of course, if everything is F , then also every object referred
to by a complex term has the property F . Similarly, if the object named
by a complex terms has property F , then something has property F . And,
furthermore, if two objects named by (simple or complex) terms are identical,
then, if one of them has the property F , so does the other. Finally, if we
use the alternative rule for identity introduction, anything referred to be a
complex terms is self-identical. In other words, in ∀E, ∃I, =E and =I we
can use complex terms where in the statement of the rules we have used the
individual constants a and b. We require these terms to be closed. However,
in ∀I and ∃E we can’t use a complex term to replace the arbitrary name a,
because a complex term would not refer to an arbitrary object: for instance,
if the term is fa, then we would be referring to an object which is one of those
objects which are values of the function f , and thus we would be referring
to an object in a specific region of the universe of discourse. In the case
of ∀I, if we have derived Ffa, where a does not occur in any undischarged
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assumption, we have not succeeded in showing that an arbitrary object has
the property F , but only that arbitrary objects that are values of the function
f have the property F : obviously this is not good enough to justify the
inference that everything has the property F . Similarly, in the case of ∃E,
by making the auxiliary assumption Ffa, we do not merely assume that an
object has the property F , but that one which is value of the function f
has F : but obviously, all that ∃xFx reports is that some things have the
property F , but not that some things which are value of f have F , which is
rather more specific.

It remains to redefine the basic notions of proof-theory which we have
introduced for the system SD of which the present system PDE is an exten-
sion so that they also apply to the latter. This is straightforward: we only
need to replace ‘SL’ by ‘PLE’ and ‘SD’ by ‘PDE’. Nonetheless, I’ll give the
definitions again here:

DEFINITIONS:

A sentence P is derivable in PDE from a set of sentences Γ of PLE if and
only if there is a derivation in PDE in which all the primary assumptions are
members of Γ and P occurs in the scope only of those assumptions.

An argument of PLE is valid in PDE if and only of the conclusion of the
argument is derivable in PDE from the set consisting of the premises.

An argument of PLE is invalid in PDE if and only if it is not valid in PDE.

A sentence P of PLE is a theorem in PDE if and only if P is derivable in
PDE from the empty set.

Sentences P and Q of SL are equivalent in PDE if and only if Q is derivable
in PDE from {P} and P is derivable in PDE from {Q}.

A set of sentences of PLE is inconsistent in PDE if and only if both a sen-
tence P of PLE and its negation ∼ P are derivable in PDE from Γ.

A set of sentences of SL is consistent in PDE if and only if it is not incon-
sistent in PDE.
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Lecture 1

1. An argument is any set of declarative sentences, one of which is designated
as the conclusion of the argument, the others being its premises.

2a. An argument is deductively valid if and only if it is not possible for
the premises to be true and the conclusion false.

2b. An argument is deductively invalid if and only it is not deductively valid.

3a. An argument is deductively sound if and only if it is deductively valid
and its premises are true.

3b. An argument is deductively unsound if and only if it is not deductively
sound.

Lecture 2

4a. An set of sentences is logically consistent if and only it is possible for all
the members of that set to be true.

4b. An set of sentences is logically inconsistent if and only it is not consis-
tent.

5a. A sentence is logically false if and only it is not possible for the sen-

Nils Kurbis: Introduction to Logic 145



Definitions Definitions

tence to be true.

5b. A sentence is logically true if and only it is not possible for the sentence
to be false.

5c. A sentence is logically indeterminate if and only it is neither logically
true nor logically false.

6. The members of a pair of sentences are logically equivalent if and only it
is not possible for one of the sentences to be true while the other sentence is
false.

Part II. Formal Definitions: Sentential Logic

Lecture 3

7. A sentential connective is used truth-functionally if and only if it is used
to generate a compound sentence form one or more sentences in such a way
that the truth-value of the generated compound is wholly determined by the
truth-values of those one or more sentences from which the compound is gen-
erated, no matter what those truth-values may be.

8. Truth-tables for Conjunction, Negation and Disjunction:

P Q P & Q
T T T
T F F
F T F
F F F

P ∼ P
T F
F T

P Q P ∨ Q
T T T
T F T
F T T
F F F

Lecture 4

9. DeMorgan’s Laws: ∼ (M&N) and ∼ M∨ ∼ N are logically equivalent,
and so are ∼ M& ∼ N and ∼ (M ∨N).
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10. Truth-table for the Material Conditional:

P Q P ⊃ Q
T T T
T F F
F T T
F F T

Lecture 5

11. Truth-table for the Material Biconditional:

P Q P ≡ Q
T T T
T F F
F T F
F F T

The Syntax of SL

12. The expressions of SL:

Sentence letters: A, B, C etc.
Truth-functional Connectives: &,∼,∨,⊃, ≡
Parentheses: (, )

13. Definition of sentence of SL:

1. Every sentence letter is a sentence.
2. If P is a sentence, then ∼ P is a sentence.
3. If P and Q are sentences, then (P&Q) is a sentence.
4. If P and Q are sentences, then (P ∨Q) is a sentence.
5. If P and Q are sentences, then (P ⊃ Q) is a sentence.
6. If P and Q are sentences, then (P ≡ Q) is a sentence.
7. Nothing is a sentence unless if can be formed by repeated

application of clauses 1-6.
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14. A sentence consisting only of a sentence letter is an atomic sentence.

15. The main connective and the immediate sentential components of sen-
tences:

1. If P is an atomic sentence, P contains no connectives and hence
does not have a main connective. P has no immediate sentential
components.

2. If P is of the form ∼ Q, where Q is a sentence, then the main
connective of P is the tilde that occurs before Q, and Q is the
immediate sentential component of P.

3. If P is of the form Q&R, Q ∨R, Q ⊃ R, or Q ≡ R, where Q and
R are sentences, then the main connective of P is the connective
that occurs between Q and R, and Q and R are the immediate
sentential components of P.

16. The sentential components of a sentence are the sentence itself, its imme-
diate sentential components, and the sentential components of its immediate
sentential components.

17. The atomic components of a sentence are the sentential components
which are atomic sentences.

The Semantics of SL

Lecture 6

18. A truth-value assignment is an assignment of truth-values (Ts or Fs) to
the atomic sentences of SL.

19a. A sentence is true on a truth-value assignment if and only if it has
the truth-value T on the truth-value assignment.
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19b. A sentence is false on a truth-value assignment if and only if it has the
truth-value F on the truth-value assignment.

20a. A sentence P of SL is truth-functionally true (or a tautology) if and
only if P is true on every truth-value assignment.

20b. A sentence P of SL is truth-functionally false (or a contradiction) if and
only if P is false on every truth-value assignment.

20c. A sentence P of SL is truth-functionally indeterminate (or contingent)
if and only if P is neither truth-functionally true nor truth-functionally false.

21. Sentences P and Q of SL are truth-functionally equivalent if and only if
there is no truth-value assignment on which P and Q have different truth-
values.

Lecture 7

22a. A set of sentences of SL is truth-functionally consistent if and only if
there is a truth-value assignment on which all the members of the set are true.

22b. A set of sentences of SL is truth-functionally inconsistent if and only if
it is not truth-functionally consistent.

23a An argument of SL is truth-functionally valid if and only if there is
no truth-value assignment on which all the premises are true and the con-
clusion is false.

23b. An argument of SL is truth-functionally invalid if and only if it is not
truth-functionally valid.

24. A set Γ of sentences of SL truth-functionally entails a sentence P (in
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symbols: Γ � P) if and only if there is no truth-value assignment on which
every member of Γ is true and P is false.

The Natural Deduction System SD

Lecture 8

25. Reiteration:

P

� P

26. Conjunction
a. Introduction (&I): b. Elimination (&E):

P

Q

� P&Q

P&Q

� P
or

P&Q

� Q

27. Material Conditional
a. Introduction (⊃I): b. Elimination (⊃E):

P

Q

� P ⊃ Q

P ⊃ Q

P

� Q
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Lecture 9

28. Negation
a. Introduction (∼I): b. Elimination (∼E):

P

Q

∼ Q

� ∼ P

∼ P

Q

∼ Q

� P

Lecture 10

29. Disjunction
a. Introduction (∨I): b. Elimination (∨E):

P

� P ∨Q

or

P

� Q ∨P

P ∨Q

P

R

Q

R

� R

30. A sentence P in a deduction is in the scope of assumptions Q1 . . .Qn if
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and only if the scope lines immediately to the left of each assumption (i.e.
the ones lines beginning with these assumptions) are also to the left of P.

31. A sentence P is derivable in SD from a set of sentences Γ of SL if
and only if there is a derivation in SD in which all the primary assumptions
are members of Γ and P occurs in the scope only of those assumptions.

32a. An argument of SL is valid in SD if and only of the conclusion of
the argument is derivable in SD from the set consisting of the premises.

32b. An argument of SL is invalid in SD if and only if it is not valid in SD.

33. A sentence P of SL is a theorem in SD if and only if P is derivable
in SD from the empty set.

34. Sentences P and Q of SL are equivalent in SD if and only if Q is
derivable in SD from {P} and P is derivable in SD from {Q}.

35a. A set of sentences of SL is inconsistent in SD if and only if both a
sentence P of SL and its negation ∼ P are derivable in SD from Γ.

35b. A set of sentences of SL is consistent in SD if and only if it is not
inconsistent in SD.
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Part III. Formal Definitions: Predicate Logic

Lecture 12

36. The vocabulary of PL:

Sentence Letters: A, A1, A2 . . . B, B1, B2 . . . Z, Z1, Z2

Predicate Letters: A′, A′
1, A′

2 . . . A′′, A′′
1, A′′

2 . . . A′′′, A′′′
1 , A′′′

2

. . . B′, B′
1, B′

2 . . . B′′, B′′
1 , B′′

2 . . . B′′′, B′′′
1 ,

B′′′
2 . . . Z ′, Z ′

1, Z ′
2 . . .Z ′′, Z ′′

1 , Z ′′
2 , Z ′′′, Z ′′′

1 ,
Z ′′′

2

Individual Terms:
a) Individual Constants: a, b . . ., a1, a2 . . ., b1, b2 . . .
b) Individual Variables: w, x, y, z, w1, x1, y1, z1, w2, x2, y2, z2 . . .

Connectives: ∼, &,∨,⊃,≡

Quantifier Symbols: ∀,∃

Punctuation Marks: (, )

37. An atomic formula of PL is an expression of PL which is either a sentence
letter or an n-place predicate followed by n individual terms.

38. An x-quantifier is a quantifier symbol followed by the variable x.

39. The definition of ‘Formula of PL’:
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1. Every atomic formula is a formula of PL.
2. If P is a formula of PL, so is ∼ P.
3. If P and Q are formulas of PL, so are (P&Q), (P ∨Q), (P ⊃ Q),

(P ≡ Q).
4. If P is a formula of PL that contains at least one occurrence of x

and no x-quantifier, then (∀x)P and (∃x)P are formulas of PL.
5. Nothing else is a formula of PL.

Lecture 13

40. A logical operator is an expression of PL which is either a quantifier or
a connective.

41. The immediate subformula, subformula and main logical operator of
a formula of PL:

1. If P is an atomic formula of PL, then P contains no logical operator,
and hence no main logical operator, and P is the only subformula
of P.

2. If P is a formula of PL of the form ∼ Q, then the tilde ∼ preceding
Q is the main operator of P and Q is the immediate subformula of
P.

3. If P is a formula of PL the form (Q ∨ R), (Q&R), (Q ⊂ R) or
(Q ≡ R), then the connective between Q and R is the main logical
connective of P, and its immediate subformulas are Q and R.

4. If P is a formula of PL of the form ∃xQ or ∀xQ, then the quantifier
that occurs before Q is the main logical operator of P, and Q is
the immediate subformula of P.

5. If P is a formula of PL, then every subformula (immediate or not)
of a subformula of P is a subformula of P, and P is a subformula
of itself.

42. The scope of a quantifier in a formula P of PL is the subformula Q
of P of which that quantifier is the main logical operator.
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43a. An occurrence of a variable x in a formula P of PL is bound if it
is within the scope of an x-quantifier.

43b. An occurrence of a variable x in a formula P of PL is free if it is not
bound.

44. A formula P is a sentence of PL if and only if no occurrence of a variable
in P is free.

45. If P is a sentence of PL of the form ∀xQ or ∃xQ, and a is an indi-
vidual constant, then Q(a/x) is a substitution instance of P. The constant
a is the instantiating constant.

46. The language PLE is constructed by adding to Definition 36 a clause
specifying that = is a two-place predicate for identity, and to 37 that if a
and b are names, then a = b is an atomic sentence. All other definitions
38-45 then hold for PLE if ‘PL’ is replaced by ‘PLE’.

Lecture 16

47. An interpretation specifies, for each name what it refers to, for each
predicate which objects it is true of, for each relation which objects stand in
it to each other, and for each sentence letter whether it is true or false.

48a. A sentence P of PLE is quantificationally true if and only if P is
true on every interpretation.

48b. A sentence P of PLE is quantificationally false if and only if P is false
on every interpretation.

48c. A sentence P of PLE is quantificationally indeterminate if and only if
P is neither quantificationally true nor quantificationally false.
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49. Sentences P and Q of PLE are quantificationally equivalent if and only
if there is no interpretation on which P and Q have different truth-values.

50a. A set of sentences of PLE is quantificationally consistent if and only if
there is at least one interpretation on which all the members of the set are
true.

50b. A set of sentences of PLE is quantificationally inconsistent if and only
if the set is not quantificationally consistent.

Lecture 17

51a. An argument of PLE is quantificationally valid if and only if there is no
interpretation on which every premise is true and the conclusion is false.

51b. An argument of PLE is quantificationally invalid if and only if the ar-
gument is not quantificationally valid.

52. A set Γ of sentences of PLE quantificationally entails a sentence P
of PLE if and only if there is no interpretation on which every member of Γ
is true and P is false.
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53. Notation (not used in the Bergmann et al.):

v(x) is the object the variable assignment v assigns to the variable
x.

i(E) is whatever the interpretation i assigns to the expression E of
PLE:
If E is a constant, i(E) is an object of the universe of discourse,
if E is an n-place predicate letter, i(E) is a set of n-tuples
〈o1 . . . on〉 of objects of the universe of discourse, and if E is a
sentence letter, then i(E) is one of the truth-values T and F.

t stands for terms, i.e. constants or variables.
i/v(t) is the object i assigns to t if it is a name, or the object v

assigns to t if it is a variable.
v[x/o] is a variable assignment just like v, except that it assigns the

object o from the universe of discourse to the variable x.

54. Satisfaction:

1. If P is a sentence letter, then a variable assignment v satisfies P
on interpretation i if and only if i(P) = T.

2. If P is an atomic formula of the form Qt1. . . tn, then v satisfies
P on i if and only if 〈i/v(t1) . . . i/v(tn)〉 is one of i(Q).

3. If P is of the form ∼ Q, then v satisfies P on i if and only if v
does not satisfy Q on i.

4. If P is of the form P&Q, then v satisfies P on i if and only if v
satisfies P and Q.

5.-7. Similarly for P ⊃ Q etc..
8. If P is of the form ∀xQ, then v satisfies P on i if and only if for

every member o of the universe of discourse of i, v[x/o] satisfies
Q on i.

9. If P is of the form ∃xQ, then v satisfies P on i if and only if for
some member o of the universe of discourse of i, v[x/o] satisfies
Q on i.

55a. A sentence P of PLE is true on an interpretation i if and only if
every variable assignment v for i satisfies P on i.
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55b. A sentence P of PLE is false on an interpretation i if and only if no
variable assignment v for i satisfies P on i.

56. Alternative Definition of Entailment applicable to Formulas: A set of
formulas Γ of PLE entails a formula P of PLE if and only if for every inter-
pretation i and every variable assignment v, if v satisfies all members of Γ
on i, then v satisfies P on i.

The Natural Deduction System PDE

Lecture 18

57. Universal Quantification

a. Introduction (∀I): b. Elimination (∀E):

P(a/x)

� ∀xP

∀xP

� P(a/x)

provided that, for (∀I), the following two conditions are fulfilled:

(i) a does not occur in an undischarged assumption
(ii) a does not occur in ∀xP
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58. Existential Quantification

a. Introduction (∃I): b. Elimination (∃E):

P(a/x)

� ∃xP

∃xPx

P(a/x)

Q

� Q

provided that, for (∃E), the following three conditions are fulfilled:

(i) a does not occur in an undischarged assumption
(ii) a does not occur in Q
(iii) a does not occur in ∃xPx

Lecture 19

59. Identity

a. Introduction (=I): b. Elimination (=E):

� ∀x(x = x)

a = b

P

� P(a / / b)

60. Conditions on functions:

1. An n-place function must correlate one and only one value with
each n-tuple of arguments.

2. Arguments and values must be from the same universe of discourse.
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61. Definition of ‘Term’:

1. Individual variables are terms.
2. Individual constants are terms.
3. If f is an n-place function and t1. . .tn are terms, then ft1. . .tn is a

term.
4. Nothing else is a term.

62. Individual constants and variables are simple terms, all others com-
plex terms. A term (simple or complex) containing a variable is called open,
otherwise it is closed.

63. In ∀E, ∃I, =E and =I complex terms can be used where in the statement
of the rules the individual constants a and b occur.

64. A sentence P is derivable in PDE from a set of sentences Γ of PLE
if and only if there is a derivation in PDE in which all the primary assump-
tions are members of Γ and P occurs in the scope only of those assumptions.

65a. An argument of PLE is valid in PDE if and only of the conclusion
of the argument is derivable in PDE from the set consisting of the premises.

65b. An argument of PLE is invalid in PDE if and only if it is not valid in
PDE.

62. A sentence P of PLE is a theorem in PDE if and only if P is deriv-
able in PDE from the empty set.

63. Sentences P and Q of SL are equivalent in PDE if and only if Q is
derivable in PDE from {P} and P is derivable in PDE from {Q}.
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64a. A set of sentences of PLE is inconsistent in PDE if and only if both a
sentence P of PLE and its negation ∼ P are derivable in PDE from Γ.

64b. A set of sentences of SL is consistent in PDE if and only if it is not
inconsistent in PDE.
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